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Optimization Problem

• Maximization Problem

max
x

f(x) subject to x ∈ C, (1)

where C is the constraint set and x is the choice variable.

• Minimization Problem

min
x
g(x) subject to x ∈ D, (2)

where D is the constraint set and x is the choice variable.

• Let x∗ be a solution to problem (1). By definition of x∗, f(x∗) ≥ f(x)
for all x ∈ C. x∗ is a (global) maximizer of f subject to x ∈ C and f(x∗)
is the maximum of f subject to x ∈ C.

• x′ is a local maximizer of f subject to x ∈ C if there is a number ε > 0
such that f(x′) ≥ f(x) for all x ∈ C such that the distance between x
and x′ is at most ε

• Any global maximizers are local maximizers.

• Note that the following two problems are equivalent

min
x
g(x) subject to x ∈ D

⇔ max
x

(−g(x)) subject to x ∈ D

• Extreme Value Theorem

A function f : X → R has a maximizer and a minimizer if

1. f is continuous

2. X ⊂ Rn is nonempty and compact

Optimization without Constraint: General Method

• Consider a function f : X → R and the maximization problem

max
x

f(x)
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• Suppose that f is differentiable and X = [x, x̄]

• x is a stationary point x if f ′(x) = 0

• Being a stationary point is neither a necessary condition nor a sufficient
condition for finding the solution

• Suppose that f : X → R is differentiable and X = [x, x̄]. If x ∈ Int[x, x̄]
is a global (or local) maximizer (or minimizer) of f , then f ′(x) = 0

• General Method for a one-variable function: How to find a solution to
maxx f(x). Assume that f : X → R is differentiable and X = [x, x̄]

1. Find all stationary points in X and values of f

2. Find values of f at the endpoints of X

3. Compare functional values of points in 1 and 2 for global maximizers.

• Example: y = f(x) = −2(x− 1)2 on x ∈ [0, 2]

f ′(x) = −4(x − 1) = 0 so that x = 1 is the stationary point. f(1) =
0, f(0) = −2 and f(2) = −2 so the global maximizer is x = 1.

• Suppose that f : X → R is differentiable and X ⊂ Rn is a compact set.
If x ∈ IntX is a global (or local) maximizer (or minimizer), then
f1(x) = 0, f2(x) = 0, . . . , fn(x) = 0

• General Method for multi-variable case: How to find a solution to maxx f(x).
Assume that f : X → R is differentiable and X ⊂ Rn is a compact set.

1. Find all stationary points in X and values of f at the stationary
points

2. Find values of f at all the boundary points of X

3. Compare functional values of points in 1 and 2 for global maximizers

• Note: Suppose X is not a compact set. Then, we may not have a global
maximizer even if f is differentiable.

Example: f : X → R where X = R = (−∞,∞) and f(x) = x2 for all
x ∈ X

• Sometimes, it is hard to find the values of f at all the boundary points
in X ⊂ Rn
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Definition: Concavity/Convexity of a Function

• Convex Set

A set C ⊂ Rn is convex if, for all x, x′ ∈ C and all λ ∈ [0, 1]

λx+ (1− λ)x′ ∈ C

Example: [0, 1] is a convex set

• Concave Function

A function f : X → R defined on the convex set X ⊂ Rn is concave if,
for all x, x′ ∈ X and all λ ∈ [0, 1]

f(λx+ (1− λ)x′) ≥ λf(x) + (1− λ)f(x′)

• Strictly Concave Function

A function f : X → R defined on the convex set X ⊂ Rn is strictly
concave if, for all x, x′ ∈ X such that x 6= x′ and all λ ∈ (0, 1)

f(λx+ (1− λ)x′) > λf(x) + (1− λ)f(x′)

• Convex Function

A function f : X → R defined on the convex set X ⊂ Rn is convex if,
for all x, x′ ∈ X and all λ ∈ [0, 1]

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′)

• Strictly Convex Function

A function f : X → R defined on the convex set X ⊂ Rn is strictly
convex if, for all x, x′ ∈ X such that x 6= x′ and all λ ∈ (0, 1)

f(λx+ (1− λ)x′) < λf(x) + (1− λ)f(x′)

One-Variable Function

• Consider a function f : X → R with X ⊂ R

• A twice continuously differentiable function f is (strictly) concave if and
only if f ′′(x) ≤ 0(f ′′(x) < 0) for all x ∈ IntX
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• A twice continuously differentiable function f is (strictly) convex if and
only if f ′′(x) ≥ 0(f ′′(x) > 0) for all x ∈ IntX.

Multi-Variable Function

• Consider a function f : X → R with X ⊂ Rn

y = f(x1, . . . , xn)

• Example with two variables; y = f(x1, x2)

When the function is twice differentiable, we have

dy = f1dx1 + f2dx2

d(dy) =
∂dy

∂x1
dx1 +

∂dy

∂x2
dx2

= (f11dx1 + f21dx2)dx1 + (f12dx1 + f22dx2)dx2

= f11dx
2
1 + 2f12dx1dx2 + f22dx

2
2

=
[
dx1 dx2

] [ f11 f12
f21 f22

] [
dx1
dx2

]
• PD, ND, PSD, and NSD

1. d2y is positive definite if d2y > 0 at dx1 6= 0 and dx2 6= 0

2. d2y is negative definite if d2y < 0 at dx1 6= 0 and dx2 6= 0

3. d2y is positive semidefinite if d2y ≥ 0 at any (dx1, dx2)

4. d2y is negative semidefinite if d2y ≤ 0 at any (dx1, dx2)

• In the example, rearranging d2y yields

d2y = f11

(
dx21 + 2

f12
f11

dx1dx2 +
f 212
f 211

dx22

)
+

(
f22 −

f 212
f11

)
dx22

= f11

(
dx1 +

f12
f11

dx2

)2

+

(
f11f22 − f 212

f11

)
dx22

Strict Concavity/Convexity of a Multi-Variable Function
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• Two Variable Case: Characterization of PD and ND

H =

[
f11 f12
f21 f22

]
The first leading principle minor is |D1| = f11.

The second leading principle minor |D2| = f11f22 − f12f21.

1. d2y is positive definite iff f11 > 0 and f11f22−f 212 > 0 at all (x1, x2) ∈
IntX

2. d2y is negative definite iff f11 < 0 and f11f22−f 212 > 0 at all (x1, x2) ∈
IntX

• General Case: y = f(x1, . . . , xn)

H =

 f11 . . . f1n
...

...
fn1 . . . fnn


|D1| = |f11| = f11

|D2| =
∣∣∣∣ f11 f12
f21 f22

∣∣∣∣ = f11f22 − f 212

|D3| =

∣∣∣∣∣∣
f11 f12 f13
f21 f22 f23
f31 f32 f33

∣∣∣∣∣∣
...

|Dn| = |H|

• In general,

1. d2y is PD iff |D1| > 0, |D2| > 0, . . . , |Dn| > 0 at every (x1, . . . , xn) ∈
IntX

2. d2y is ND iff |D1| < 0, |D2| > 0, . . . , (−1)n |Dn| > 0 at every
(x1, . . . , xn) ∈ IntX

• When y = f(x1, . . . , xn) be twice differentiable

1. f is strictly convex iff d2y is PD at every (x1, . . . , xn) ∈ IntX.
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2. f is strictly concave iff d2y is ND at every (x1, . . . , xn) ∈ IntX.

Example: f(x1, x2, x3) = x21 + 2x22 + 3x23 + 2x1x2 + 2x1x3

H =

 2 2 2
2 4 0
2 0 6


and dy2 is PD.

Concavity/Convexity of a Multi-Variable Function

• The kth order leading principle minor of an n× n symmetric matrix is
the determinant of the matrix obtained by deleting the last n− k rows
and n − k columns. Consider H with n × n. The kth order leading
principal minor is

|Dk| =

∣∣∣∣∣∣
f11 f12 . . . f1k
...

...
fk1 fk2 . . . fkk

∣∣∣∣∣∣
• A kth order principle minor of an n × n symmetric matrix is the de-

terminant of a k × k matrix obtained by deleting n − k rows and the
corresponding n− k columns

Example:

H =

 0 0 3
0 −2 0
3 0 −6


• d2y is positive semidefinite iff all principal minors are nonnegative

• d2y is negative semidefinite iff all the kth order principal minors are (i)
nonnegative if k is even and (ii) nonpositive if k is odd

• Let y = f(x1, . . . , xn) be twice differentiable.

1. f is convex iff d2y is PSD at every (x1, . . . , xn) ∈ IntX

2. f is convex iff d2y is NSD at every (x1, . . . , xn) ∈ IntX

Example: principle minors
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Optimization without Constraint: Local maximizer/minimizer by
using Concavity/Convexity

• (One variable function) Let f : X → R with X ⊂ R be twice differen-
tiable with continuous f ′ and f ′′. Suppose that x∗ is a stationary point
in IntX (f ′(x∗) = 0)

– If f ′′(x∗) < 0, then x∗ is a local maximizer

– If x∗ is a local maximizer, f ′′(x∗) ≤ 0

– If f ′′(x∗) > 0, then x∗ is a local minimizer

– If x∗ is a local minimizer, f ′′(x∗) ≥ 0

– If f ′′(x∗) = 0, then we do not know whether x is a local maximizer
or minimizer without further investigation.

Example: f(x) = x3 − 12x2 + 36x+ 8

• (Multi variable function) Let f : X → R with X ⊂ Rn be twice dif-
ferentiable with continuous fij for all i, j. Suppose that x∗ ∈ IntX is a
stationary point (fi(x

∗) = 0 for all i)

– If H is negative definite at x = x∗, then x∗ is a local maximizer

– If x∗ is a local maximizer, then H is negative semidefinite at x = x∗

– If H is positive definite at x = x∗, then x∗ is a local minimizer

– If x∗ is a local minimizer, then H is positive semidefinite at x = x∗

Example: y = f(x) = −x31 + 3x1x3 + 2x2 − x22 − 3x23

Optimization without Constraint: global maximizer/minimizer by
using Concavity/Convexity

• (One-variable function) Let f : X → R with a convex set X ⊂ R be a
differentiable function

1. If f is a concave function and x∗ ∈ IntX is a stationary point of f ,
then x∗ is a global maximizer

2. If f is a convex function and x∗ ∈ IntX is a stationary point of f ,
then x∗ is a global minimizer

7



• (One-variable function) Let f : X → R with X ⊂ R be a twice differen-
tiable function.

1. If f ′′(x) ≤ 0 for all x ∈ X and x∗ ∈ IntX is a stationary point of f ,
then x∗ is a global maximizer

2. If f ′′(x) ≥ 0 for all x ∈ X and x∗ ∈ IntX is a stationary point of f ,
then x∗ is a global minimizer

• Example: f(x) = −2(x− 1)2 with the domain X = R

• (Multi-variable function) Let f : X → R with a convex set X ⊂ Rn be
a differentiable function

1. If f is concave and x∗ ∈ IntX is a stationary point, then x∗ is a
global maximizer

2. If f is convex and x∗ ∈ IntX is a stationary point, then x∗ is a global
minimizer

• (Multi-variable case) Let f : X → R with a convex set X ⊂ R be a
twice differentiable function with continuous fij for all i, j

1. If f has negative semidefinite H at all x ∈ X and x∗ ∈ IntX is a
stationary point, then x∗ is a global maximizer

2. If f has positive semidefinite H at all x ∈ X and x∗ ∈ IntX is a
stationary point, then x∗ is a global minimizer

• Example: A firm that produces two goods

P1 = 12, P2 = 18

r = P1x1 + P2x2

c(x1, x2) = 2x21 + x1x2 + 2x22

π : X → R where X = R2
+

• Example: Firm’s profit maximization

Q(K,L) = LαKα α < 1
2 .

• Example: A monopolist facing the three different markets

R = R1(Q1) +R2(Q2) +R3(Q3)

C = C(Q) where Q = Q1 +Q2 +Q3.
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π = R1(Q1) +R2(Q2) +R3(Q3)− C(Q1 +Q2 +Q3)

Let P1 = 63− 4Q1, P2 = 105− 5Q2, P3 = 75− 6Q3, and C = 20 + 15Q.

Optimization with Equality Constraints: Intuition with a Single
Constraint

• f : X → R where X ⊂ Rn

max
x∈X

f(x) subject to g(x) = c

min
x∈X

f(x) subject to g(x) = c

• Consider a two variable function f : X → Rwith X ⊂ R2 for the maxi-
mization problem: maxx∈X f(x) subject to g(x) = c

Assume f and g are differentiable. Suppose that f is increasing in x.
Consider a level curve of f for a

L(a) = {x ∈ X; f(x) = a}

• Suppose that the maximal value of the function f is a∗ at a solution
(x∗1, x

∗
2) for the maximization problem. Then, the constraint curve is

tangent to L(a∗) at (x∗1, x
∗
2).

g(x1, x2)− c = 0

⇒ g1(x1, x2)dx1 + g2(x1, x2)dx2 = 0

⇒ dx2
dx1

= −g1(x
∗
1, x
∗
2)

g2(x∗1, x
∗
2)

Furthermore,

f(x1, x2)− a∗ = 0

⇒ f1(x1, x2)dx1 + f2(x1, x2)dx2 = 0

⇒ dx2
dx1

= −f1(x
∗
1, x
∗
2)

f2(x∗1, x
∗
2)

• Because the constraint curve is tangent to L(a∗) at (x∗1, x
∗
2), we have

−g1(x
∗
1, x
∗
2)

g2(x∗1, x
∗
2)

=
dx2
dx1

= −f1(x
∗
1, x
∗
2)

f2(x∗1, x
∗
2)
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• Letting f1(x
∗
1,x

∗
2)

g1(x∗1,x
∗
2)

= f2(x
∗
1,x

∗
2)

g2(x∗1,x
∗
2)

= λ∗, the (first-order) necessary conditions are

f1(x
∗
1, x
∗
2)− λ∗g1(x∗1, x∗2) = 0 (3)

f2(x
∗
1, x
∗
2)− λ∗g2(x∗1, x∗2) = 0 (4)

c− g(x∗1, x
∗
2) = 0 (5)

• Set up the Lagrangian function as

L(x1, x2) = f(x1, x2) + λ[c− g(x1, x2)]

• Take the derivatives of L(x1, x2) with respect to x1, x2 and λ. Their
values at the solution must be

∂L

∂x1
(x∗1, x

∗
2) = f1(x

∗
1, x
∗
2)− λ∗g1(x∗1, x∗2) = 0

∂L

∂x2
(x∗1, x

∗
2) = f2(x

∗
1, x
∗
2)− λ∗g2(x∗1, x∗2) = 0

∂L

∂λ
(x∗1, x

∗
2) = c− g(x∗1, x

∗
2) = 0

• Interpretation of the Lagrangian multiplier. Let (x∗1(c), x
∗
2(c)) be a solu-

tion for maxx1,x2 f(x1, x2) subject to g(x1, x2) = c. Taking the derivative
of the maximum value function f(x∗1(c), x

∗
2(c)) with respect to c yields

df(x∗1(c), x
∗
2(c))

dc
= f1(x

∗
1(c), x

∗
2(c))

∂x∗1
∂c

+ f2(x
∗
1(c), x

∗
2(c))

∂x∗2
∂c

= λ∗
[
g1(x

∗
1(c), x

∗
2(c))

∂x∗1
∂c

+ g2(x
∗
1(c), x

∗
2(c))

∂x∗2
∂c

]
= λ∗

The second equation comes from the first-order conditions, f1(x
∗
1, x
∗
2) =

λ∗g1(x
∗
1, x
∗
2) and f2(x

∗
1, x
∗
2) = λ∗g2(x

∗
1, x
∗
2). The third equality can be

shown by taking the total differential of the constraint:

g(x∗1(c), x
∗
2(c)) = c

⇒ g1(x
∗
1(c), x

∗
2(c))

∂x∗1
∂c

+ g2(x
∗
1(c), x

∗
2(c))

∂x∗2
∂c

= 1

• λ∗ measures the effect of a marginal change in the constraint via c on
the optimal value of the objective function.
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• Example: max f(x1, x2) subject to x1 + x2 = 6, where f(x1, x2) = x1x2.

Optimization with Equality Constraints: Multiple Equality Con-
straints

• Consider a multi-variable with f : X → R with X ⊂ Rn. Optimization
problems with multiple equality constraints are

max
x∈X

f(x) or min
x∈X

f(x) subject to


g1(x) = c1

...
gm(x) = cm

(6)

• The Lagrangian function for problem (6) is

L = f(x) + λ1[c
1 − g′(x)] + λ2[c

2 − g2(x)] + · · ·+ λm[cm − gm(x)](7)

= f(x) +
m∑
j=1

λj[c
j − gj(x)]

• The first-order conditions for (7)

∂L

∂xi
= 0 for i = 1, . . . , n (8)

∂L

∂λi
= 0 for j = 1, . . . ,m (9)

Optimization with Equality Constraints: Local maximizer (mini-
mizer)

• Necessary condition for a local maximizer (minimizer)

If x∗ = (x∗1, . . . , x
∗
n) ∈ IntX is a local max (min), then x∗ = (x∗1, . . . , x

∗
n)

and λ∗ = [λ∗1, . . . , λ
∗
n] satisfy (8) and (9).

• Sufficient condition for a local maximizer (minimizer): Two-
Variable and Single-Equality Constraint Case

Consider a two-variable objective function and a single constraint:

max
(x1,x2)

f(x1, x2) subject to g(x1, x2) = c.
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Let x2 = h(x1) be the value of the second choice variable such that
g(x1, h(x1)) = c for all x. Let F (x1) = f(x1, h(x1)). Then, the maxi-
mization problem becomes maxx1 F (x1). Taking the first-order deriva-
tive yields

F ′(x1) = f1(x1, h(x1)) + f2(x1, h(x1))h
′(x1)

Taking the second-order derivative yields

F ′′(x1) = f11(x1, h(x1)) + f12(x1, h(x1))h
′(x1) +

f21(x1, h(x1))h
′(x1) + f22(x1, h(x1))(h

′(x1))
2

+f2(x1, h(x1))h
′′(x1)

h′′(x1) can be derived from taking the second order derivative of g(x1, h(x1)) =
c with respect to x1. It is messy but eventually we can express F ′′(x∗1)
at (x∗1, x

∗
2) as

F ′′(x∗1) =
−|H|

g2(x1, h(x∗1))
2
,

where
∣∣H∣∣ is the Bordered Hessian of the Lagrangian.

∣∣H∣∣ =

∣∣∣∣∣∣
0 g1(x

∗
1, x
∗
2) g2(x

∗
1, x
∗
2)

g1(x
∗
1, x
∗
2) f11(x

∗
1, x
∗
2)− λ∗g11(x∗1, x∗2) f12(x

∗
1, x
∗
2)− λ∗g12(x∗1, x∗2)

g2(x
∗
1, x
∗
2) f21(x

∗
1, x
∗
2)− λ∗g21(x∗1, x∗2) f22(x

∗
1, x
∗
2)− λ∗g22(x∗1, x∗2)

∣∣∣∣∣∣
• Sufficient condition for a local maximizer (minimizer): Two-

Variable and Single-Equality Constraint Case

Suppose that (x∗1, x
∗
2) and λ∗ satisfy the first-order conditions

f1(x
∗
1, x
∗
2)− λ∗g1(x∗1, x∗2) = 0,

f2(x
∗
1, x
∗
2)− λ∗g2(x∗1, x∗2) = 0,

g(x∗1, x
∗
2) = c.

If
∣∣H∣∣ > 0, then (x∗1, x

∗
2) is a local maximizer of f subject to g(x1, x2) = c.

If
∣∣H∣∣ < 0, then (x∗1, x

∗
2) is a local minimizer of f subject to g(x1, x2) = c.

• Sufficient condition for a local maximizer (minimizer): Multi-
Variable and Single-Equality Constraint Case

The Lagrangian function is L = f(x) + λ[c− g(x)].
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∣∣Hi

∣∣ =

∣∣∣∣∣∣∣∣∣∣

0 g1 g2 . . . gi
g1 f11 − λg11 f12 − λg12 . . . f1i − λg1i
g2 f21 − λg21 f22 − λg22 . . . f2i − λg2i
...

...
...

...
gi fi1 − λgi1 fi2 − λgi2 . . . fii − λgii

∣∣∣∣∣∣∣∣∣∣∣∣Hn

∣∣ =
∣∣H∣∣ (Bordered Hessian of the Lagrangian)

• Sufficient condition for a local maximizer (minimizer): Multi-
Variable and Single-Equality Constraint Case

Suppose that x∗ = [x∗1, . . . , x
∗
n] and λ∗ satisfy the first-order conditionsf

fi(x
∗)− λgi(x∗) = 0 for i = 1, . . . , n

g(x∗)− c = 0

If
∣∣H2

∣∣ > 0,
∣∣H3

∣∣ < 0, . . . , (−1)n
∣∣Hn

∣∣ > 0 at (x∗, λ∗), then x∗ is a local
maximizer of f subject to g(x) = c

If
∣∣H2

∣∣ < 0,
∣∣H3

∣∣ < 0, . . . ,
∣∣Hn

∣∣ < 0 at (x∗, λ∗), then x∗ is a local mini-
mizer of f subject to g(x) = c.

Example: f(x1, x2) = x1x2 and g(x1, x2) = x1 + x2

Optimization with Equality Constraints: Global Maximizer (Min-
imizer)

• Maximization problem with a single constraint

max
x∈X

f(x) subject to g(x)− c = 0 (10)

• Minimization problem with a single constraint

min
x∈X

f(x) subject to g(x)− c = 0 (11)

• Suppose that there exists λ∗ such that x∗ is a stationary point of L =
f(x) + λ∗[c− g(x)] and g(x∗) = c.

1. x∗ solves problem (10) if L is concave (f is concave and λ∗g is convex)

2. x∗ solves problem (11) if L is convex (f is convex and λ∗g is concave)
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• One useful result: If g is linear in x, then λ∗g is both convex and concave.
Therefore, if f is concave(convex), any stationary point x∗ ∈ IntX of L
solves problem(10) (problem(11)).

Optimization with Equality Constraints: Example of Cost Mini-
mization

• Firm’s production function Q = Q(x1, x2) with Q1 > 0 and Q2 > 0

• Cost of (x1, x2) : P1x1 + P2x2, where P1 and P2 are input prices

• Cost minimization problem

min
x1,x2

P1x1 + P2x2 subject to Q0 = Q(x1, x2)

• Lagrangian function

L = P1x1 + P2x2 + λ[Q0 −Q(x1, x2)]

• First-order conditions are

L1 = P1 − λQ1(x1, x2) = 0 (12)

L2 = P2 − λQ2(x1, x2) = 0 (13)

Lλ = Q0 −Q(x1, x2) = 0 (14)

• From (12) and (13)
P1

Q1
=
P2

Q2
= λ

Alternatively, they induce
P1

P2
=
Q1

Q2
,

where P1/P2 is the negative of the slope of isocosts and Q1/Q2 is the
absolute value of the slope of an isoquant (i.e., marginal rate of technical
substitution of x1 for x2).

• Bordered Hessian

∣∣H∣∣ =

∣∣∣∣∣∣
0 Q1(x

∗
1, x
∗
2) Q2(x

∗
1, x
∗
2)

Q1(x
∗
1, x
∗
2) −λQ11(x

∗
1, x
∗
2) −λQ12(x

∗
1, x
∗
2)

Q2(x
∗
1, x
∗
2) −λQ21(x

∗
1, x
∗
2) −λQ22(x

∗
1, x
∗
2)

∣∣∣∣∣∣
If
∣∣H∣∣ < 0, then (x∗1, x

∗
2) is a local minimizer.
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• If there exists λ∗ such that P1x1 + P2x2 + λ∗[Q0−Q(x1, x2)] is a convex
function and Q0 = Q(x∗1, x

∗
2), then (x∗1, x

∗
2) is a global minimizer

• Since P1x1 + P2x2 is linear, it is a convex function. Also, note that
λ∗ = P1

Q1
= P2

Q2
> 0. Therefore, if Q(x1, x2) is a concave function, then

(x∗1, x
∗
2) is a global minimizer.

Quasiconcavity/Quasiconvexity of a Function

• Consider a function g : X → R with X ⊂ Rn. The upper level set of g
for any a ∈ R is defined as

P (a) = {x ∈ X; g(x) ≥ a}

• Definition: A function g : X → R with a convex set X ⊂ Rn is quasi-
concave if P (a) is convex for every a.

• The lower level set of g for any a ∈ R is defined as

L(a) = {x ∈ X; g(x) ≤ a}

• Definition: A function g : X → R with a convex set X ⊂ Rn is quasi-
convex if L(a) is convex for every a.

• Alternative Definitions

– A function g : X → R with a convex set X ⊂ Rn is quasiconcave if,
for all x, x′ ∈ X and all λ ∈ [0, 1]

g (λx+ (1− λ)x′) ≥ min[g(x), g(x′)]

– A function g : X → R with a convex set X ⊂ Rn is quasiconvex if,
for all x, x′ ∈ X and all λ ∈ [0, 1]

g (λx+ (1− λ)x′) ≤ max[g(x), g(x′)]

– A function g : X → R with a convex set X ⊂ Rn is strictly quasi-
concave if, for all x, x′ ∈ X (x 6= x′) and all λ ∈ (0, 1)

g (λx+ (1− λ)x′) > min[g(x), g(x′)]

15



– A function g : X → R with a convex set X ⊂ Rn is strictly quasi-
convex if, for all x, x′ ∈ X (x 6= x′) and all λ ∈ (0, 1)

g (λx+ (1− λ)x′) < max[g(x), g(x′)]

• Useful properties

A concave function is quasiconcave.

A convex function is quasiconvex.

• Consider a twice differentiable function g : X → R with a convex set
X ⊂ Rn.For k = 1, . . . n,

Bk =


0 g1 g2 . . . gk
g1 g11 g12 . . . g1k
g2 g21 g22 . . . g2k
...

...
...

...
gk gk1 gk2 . . . fkk


• If |B1| < 0, |B2| < 0, . . . , |Bn| < 0, then f is strictly quasiconvex

• If |B1| < 0, |B2| > 0, . . . , (−1)n |Bn| > 0, then f is strictly quasiconcave

• If f is quasiconvex, then |B1| ≤ 0, |B2| ≤ 0, . . . , |Bn| ≤ 0

• If f is quasiconcave, then |B1| ≤ 0, |B2| ≥ 0, . . . , (−1)n |Bn| ≥ 0

Optimization with Non-negativity Restrictions

• Consider a function f : X → R with X ⊂ R.

• Maximization problem with non-negativity restriction

max
x

f(x) subject to x ≥ 0. (15)

• If a solution x∗ for problem (15) exists, then

(i) f ′(x∗) ≤ 0, (ii) x∗ ≥ 0, (iii) x∗ × f ′(x∗) = 0.

The last condition means that at least one of x∗ and f ′(x∗) must be zero
(complementary slackness between x and f ′(x)).
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• In general, maximization problem with non-negativity restrictions for a
multi-variable function f : X → R with X ⊂ Rn

max
x

f(x) subject to xi ≥ 0 forall i = 1, . . . , n, (16)

where x = [x1, . . . , xn]. First order conditions are

(i) fi(x
∗) ≤ 0, (ii) x∗i ≥ 0, (iii) x∗i × fi(x∗) = 0 for all i = 1, . . . , n.

for all i = 1, . . . , n

Optimization with Inequality Constraints and Non-negativity Re-
strictions

• Consider an example with two inequality constraints and three choice
variables (i.e., x = [x1, x2, x3])

max
x

f(x) subject to
g1(x) ≤ c1

g2(x) ≤ c2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
(17)

• Set up the Lagrangian function for problem (17) as

L = f(x) + λ1[c
1 − g1(x)] + λ2[c

2 − g2(x)] (18)

• Problem (17) can be transformed to

max
x

f(x) subject to
g1(x) + s1 = c1

g2(x) + s2 = c2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, s1 ≥ 0, s2 ≥ 0
(19)

• Set up the Lagrangian function for problem (18) as

L̄ = f(x) + λ1[c
1 − s1 − g1(x)] + λ2[c

2 − s2 − g2(x)] (20)

• First order conditions for a solution for (20) is

∂L̄

∂xi
≤ 0, x∗i ≥ 0, x∗i ×

∂L̄

∂xi
= 0 for all i = 1, 2, 3 (21)

∂L̄

∂sj
≤ 0, sj ≥ 0, sj × ∂L̄

∂sj
= 0 for all j = 1, 2 (22)

∂L̄

∂λj
= cj − sj − gj(x∗) = 0 for all j = 1, 2 (23)

17



• From (22) and (23), we have

∂L̄

∂sj
= −λ∗j ≤ 0⇔ λ∗j ≥ 0

sj = cj − gj(x∗) ≥ 0

Hence the first order conditions, (21) to (23), can be rewritten as

∂L̄

∂xi
≤ 0, x∗i ≥ 0, x∗i ×

∂L̄

∂xi
= 0 for all i = 1, 2, 3 (24)

λ∗j ≥ 0, cj − gj(x∗) ≥ 0, λ∗j ×
[
cj − gj(x∗)

]
= 0 for all j = 1, 2 (25)

• (24) and (25) can be equivalently expressed as the following first-order
conditions for the Lagrangian function in (18)

∂L

∂xi
≤ 0, x∗i ≥ 0, x∗i ×

∂L

∂xi
= 0 for all i = 1, 2, 3

∂L

∂λj
≥ 0, λ∗j ≥ 0, λ∗j ×

∂L

∂λj
= 0 for all j = 1, 2

• Generally, consider the following maximization problem

max
x

f(x) subject to
gj(x) ≤ cj for all j = 1, . . . ,m
xi ≥ 0 for all i = 1, . . . , n

(26)

The Lagrangian function for problem (26) is

L = f(x) +
m∑
j=1

λj[c
j − gj(x)]

and the Kuhn-Tucker Conditions are

∂L

∂xi
≤ 0, x∗i ≥ 0, x∗i ×

∂L

∂xi
= 0 for all i = 1, . . . , n

∂L

∂λj
≥ 0, λ∗j ≥ 0, λ∗j ×

∂L

∂λj
= 0 for all j = 1, . . . ,m

• Arrow-Enthoven Sufficiency Theorem: Quasiconcave Program-
ming

If the following conditions are satisfied:
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(a) x∗ satisfies the Kuhn-Tucker conditions

(b) each gj is differentiable and quasiconvex in Rn
+

(c) f is differentiable and it is [concave] or [quasiconcave in Rn
+ and the

n derivatives fi(x
∗) are not all zero and f is twice differentiable in the

neighborhood of x∗] or [quasiconcave in Rn
+ and fi(x

∗) < 0 for at least
one xi] or [quasiconcave in Rn

+ and fi(x
∗) > 0 for some xj that can take

on a positive value without violating the constraints],

then x∗ is a solution to the maximization problem.

• Generally, consider the following maximization problem

min
x
f(x)subject to

gj(x) ≥ cj for all j = 1, . . . ,m
xi ≥ 0 for all i = 1, . . . , n

(27)

The Lagrangian function for problem (26) is

L = f(x) +
m∑
j=1

λj[c
j − gj(x)]

and the Kuhn-Tucker Conditions are

∂L

∂xi
≥ 0, x∗i ≥ 0, x∗i ×

∂L

∂xi
= 0 for all i = 1, . . . , n

∂L

∂λj
≤ 0, λ∗j ≥ 0, λ∗j ×

∂L

∂λj
= 0 for all j = 1, . . . ,m

• Arrow-Enthoven Sufficiency Theorem: Quasiconvex Program-
ming

If the following conditions are satisfied:

(a) x∗ satisfies the Kuhn-Tucker conditions

(b) each gj is differentiable and quasiconcave in Rn
+

(c) f is differentiable and it is [convex] or [quasiconvex in Rn
+ and the

n derivatives fi(x
∗) are not all zero and f is twice differentiable in the

neighborhood of x∗] or [quasiconvex in Rn
+ and fi(x

∗) > 0 for at least
one xi] or [quasiconvex in Rn

+ and fi(x
∗) < 0 for some xj that can take

on a positive value without violating the constraints],

then x∗ is a solution to the minimization problem.
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Optimization with Inequality Constraints and Non-negativity Con-
straints: Examples

• Example 1: A decision maker wants to find out (x1, x2) that maximizes

x1 + x
1/2
2 subject to (i) x1 + bx2 ≤ 1, (ii) x1 ≥ 0, (iii) x2 ≥ 0. Assume

that b > 0.

The Lagrangean function is

L = x1 + x
1/2
2 + λ[1− x1 − bx2]

Kuhn-Tucker conditions are

L1 = 1− λ ≤ 0, x1 ≥ 0, L1x1 = 0

L2 =
1

2
x
−1/2
2 − λb ≤ 0, x2 ≥ 0, L2x2 = 0

Lλ = 1− x1 − bx2 ≥ 0, λ ≥ 0, Lλλ = 0

Derive the solution to the problem.

Case 1) x1 = 0 and x2 = 0. Then Lλ = 1 > 0 and L2 = −λb ≤ 0.
Therefore, λ ≥ 1/b. So, this violates the condition Lλλ = 0. This means
that x1 = 0 and x2 = 0 is not part of a solution.

Case 2) x1 > 0 and x2 = 0. Then, L1 = 1 − λ = 0. Therefore, λ = 1.
Note that as x2 → 0, L2 →∞. Therefore, this is not part of a solution.

Case 3) x1 = 0 and x2 > 0. Then, L1 = 1−λ ≤ 0. So, λ ≥ 1. Then, Lλ =
1 − bx2 = 0. x2 = 1/b ≥ 0. Then, L2 = 1

2b
1/2 − λb = 0. λ = 1

2b
−1/2 ≥ 1.

So, 0 < b ≤ 1/4.

Case 4) x1 > 0 and x2 > 0. Then, λ = 1 from L1 = 1− λ = 0. We have

x2 = 1/4b2 from L2 = 1
2x
−1/2
2 − λb = 0. x1 = (4b− 1)/4b > 0. Therefore,

b > 1/4.

From all the possible cases, we have

(x∗1, x
∗
2) =

{ (
0, 1b
)

if 0 < b ≤ 1/4(
4b−1
4b ,

1
4b2

)
if b > 1/4

Note that the objective function is a concave function and the function
appeared in the constraint is a convex function. Furthermore, at least
one of the first-order derivatives of the objective function evaluated at
(x∗1, x

∗
2) is not zero. Therefore, (x∗1, x

∗
2) is the solution to the problem.
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• Example 2: War time rationing.

A consumer’s utility function is U [x1, x2] = x1x
2
2 in a two-good economy

with p1 = 1, p2 = 1 and I = 100. Rationing constraint is 2x1 +x2 ≤ 120.
The consumer’s maximization problem is

maxU [x1, x2] subject to
x1 + x2 ≤ 100
2x1 + x2 ≤ 120
x1 ≥ 0, x2 ≥ 0

The Lagrangian function is then

L = x1x
2
2 + λ1[100− x1 − x2] + λ2[120− 2x1 − x2]

The Kuhn-Tucker conditions are

L1 = x22 − λ1 − 2λ2 ≤ 0, x1 ≥ 0, x1 × L1 = 0

L2 = 2x1x2 − λ1 − λ2 ≤ 0, x2 ≥ 0, x2 × L2 = 0

Lλ1 = 100− x1 − x2 ≥ 0, λ1 ≥ 0, λ1 × Lλ1 = 0

Lλ2 = 120− 2x1 − x2 ≥ 0, λ2 ≥ 0, λ2 × Lλ2 = 0
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