OPTIMIZATION

Seunguin Han

September, 2017

Optimization Problem

- Maximization Problem

$$
\begin{equation*}
\max _{x} f(x) \quad \text { subject to } \quad x \in C, \tag{1}
\end{equation*}
$$

where C is the constraint set and x is the choice variable.

- Minimization Problem

$$
\begin{equation*}
\min _{x} g(x) \quad \text { subject to } \quad x \in D, \tag{2}
\end{equation*}
$$

where D is the constraint set and x is the choice variable.

- Let x^{*} be a solution to problem (1). By definition of $x^{*}, f\left(x^{*}\right) \geq f(x)$ for all $x \in C . x^{*}$ is a (global) maximizer of f subject to $x \in C$ and $f\left(x^{*}\right)$ is the maximum of f subject to $x \in C$.
- x^{\prime} is a local maximizer of f subject to $x \in C$ if there is a number $\epsilon>0$ such that $f\left(x^{\prime}\right) \geq f(x)$ for all $x \in C$ such that the distance between x and x^{\prime} is at most ϵ
- Any global maximizers are local maximizers.
- Note that the following two problems are equivalent

$$
\begin{aligned}
\min _{x} g(x) \quad \text { subject to } x & \in D \\
& \Leftrightarrow \max _{x}(-g(x)) \quad \text { subject to } x \in D
\end{aligned}
$$

- Extreme Value Theorem

A function $f: X \rightarrow \mathbb{R}$ has a maximizer and a minimizer if

1. f is continuous
2. $X \subset \mathbb{R}^{n}$ is nonempty and compact

Optimization without Constraint: General Method

- Consider a function $f: X \rightarrow \mathbb{R}$ and the maximization problem

$$
\max _{x} f(x)
$$

- Suppose that f is differentiable and $X=[\underline{x}, \bar{x}]$
- x is a stationary point x if $f^{\prime}(x)=0$
- Being a stationary point is neither a necessary condition nor a sufficient condition for finding the solution
- Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable and $X=[\underline{x}, \bar{x}]$. If $x \in \operatorname{lnt}[\underline{x}, \bar{x}]$ is a global (or local) maximizer (or minimizer) of f, then $f^{\prime}(x)=0$
- General Method for a one-variable function: How to find a solution to $\max _{x} f(x)$. Assume that $f: X \rightarrow \mathbb{R}$ is differentiable and $X=[\underline{x}, \bar{x}]$

1. Find all stationary points in X and values of f
2. Find values of f at the endpoints of X
3. Compare functional values of points in 1 and 2 for global maximizers.

- Example: $y=f(x)=-2(x-1)^{2} \quad$ on $x \in[0,2]$
$f^{\prime}(x)=-4(x-1)=0$ so that $x=1$ is the stationary point. $f(1)=$ $0, f(0)=-2$ and $f(2)=-2$ so the global maximizer is $x=1$.
- Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable and $X \subset \mathbb{R}^{n}$ is a compact set. If $x \in \operatorname{Int} X$ is a global (or local) maximizer (or minimizer), then $f_{1}(x)=0, \quad f_{2}(x)=0, \quad \ldots, f_{n}(x)=0$
- General Method for multi-variable case: How to find a solution to $\max _{x} f(x)$. Assume that $f: X \rightarrow \mathbb{R}$ is differentiable and $X \subset \mathbb{R}^{n}$ is a compact set.

1. Find all stationary points in X and values of f at the stationary points
2. Find values of f at all the boundary points of X
3. Compare functional values of points in 1 and 2 for global maximizers

- Note: Suppose X is not a compact set. Then, we may not have a global maximizer even if f is differentiable.
Example: $f: X \rightarrow \mathbb{R}$ where $X=\mathbb{R}=(-\infty, \infty)$ and $f(x)=x^{2}$ for all $x \in X$
- Sometimes, it is hard to find the values of f at all the boundary points in $X \subset \mathbb{R}^{n}$

Definition: Concavity/Convexity of a Function

- Convex Set

A set $C \subset \mathbb{R}^{n}$ is convex if, for all $x, x^{\prime} \in C$ and all $\lambda \in[0,1]$

$$
\lambda x+(1-\lambda) x^{\prime} \in C
$$

Example: $[0,1]$ is a convex set

- Concave Function

A function $f: X \rightarrow \mathbb{R}$ defined on the convex set $X \subset \mathbb{R}^{n}$ is concave if, for all $x, x^{\prime} \in X$ and all $\lambda \in[0,1]$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \geq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

- Strictly Concave Function

A function $f: X \rightarrow \mathbb{R}$ defined on the convex set $X \subset \mathbb{R}^{n}$ is strictly concave if, for all $x, x^{\prime} \in X$ such that $x \neq x^{\prime}$ and all $\lambda \in(0,1)$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right)>\lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

- Convex Function

A function $f: X \rightarrow \mathbb{R}$ defined on the convex set $X \subset \mathbb{R}^{n}$ is convex if, for all $x, x^{\prime} \in X$ and all $\lambda \in[0,1]$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

- Strictly Convex Function

A function $f: X \rightarrow \mathbb{R}$ defined on the convex set $X \subset \mathbb{R}^{n}$ is strictly convex if, for all $x, x^{\prime} \in X$ such that $x \neq x^{\prime}$ and all $\lambda \in(0,1)$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right)<\lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

One-Variable Function

- Consider a function $f: X \rightarrow R$ with $X \subset \mathbb{R}$
- A twice continuously differentiable function f is (strictly) concave if and only if $f^{\prime \prime}(x) \leq 0\left(f^{\prime \prime}(x)<0\right)$ for all $x \in \operatorname{lnt} X$
- A twice continuously differentiable function f is (strictly) convex if and only if $f^{\prime \prime}(x) \geq 0\left(f^{\prime \prime}(x)>0\right)$ for all $x \in \operatorname{lnt} X$.

Multi-Variable Function

- Consider a function $f: X \rightarrow R$ with $X \subset \mathbb{R}^{n}$

$$
y=f\left(x_{1}, \ldots, x_{n}\right)
$$

- Example with two variables; $y=f\left(x_{1}, x_{2}\right)$

When the function is twice differentiable, we have

$$
\begin{aligned}
d y & =f_{1} d x_{1}+f_{2} d x_{2} \\
d(d y) & =\frac{\partial d y}{\partial x_{1}} d x_{1}+\frac{\partial d y}{\partial x_{2}} d x_{2} \\
& =\left(f_{11} d x_{1}+f_{21} d x_{2}\right) d x_{1}+\left(f_{12} d x_{1}+f_{22} d x_{2}\right) d x_{2} \\
& =f_{11} d x_{1}^{2}+2 f_{12} d x_{1} d x_{2}+f_{22} d x_{2}^{2} \\
& =\left[\begin{array}{ll}
d x_{1} & d x_{2}
\end{array}\right]\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]
\end{aligned}
$$

- PD, ND, PSD, and NSD

1. $d^{2} y$ is positive definite if $d^{2} y>0$ at $d x_{1} \neq 0$ and $d x_{2} \neq 0$
2. $d^{2} y$ is negative definite if $d^{2} y<0$ at $d x_{1} \neq 0$ and $d x_{2} \neq 0$
3. $d^{2} y$ is positive semidefinite if $d^{2} y \geq 0$ at any $\left(d x_{1}, d x_{2}\right)$
4. $d^{2} y$ is negative semidefinite if $d^{2} y \leq 0$ at any $\left(d x_{1}, d x_{2}\right)$

- In the example, rearranging $d^{2} y$ yields

$$
\begin{aligned}
d^{2} y & =f_{11}\left(d x_{1}^{2}+2 \frac{f_{12}}{f_{11}} d x_{1} d x_{2}+\frac{f_{12}^{2}}{f_{11}^{2}} d x_{2}^{2}\right)+\left(f_{22}-\frac{f_{12}^{2}}{f_{11}}\right) d x_{2}^{2} \\
& =f_{11}\left(d x_{1}+\frac{f_{12}}{f_{11}} d x_{2}\right)^{2}+\left(\frac{f_{11} f_{22}-f_{12}^{2}}{f_{11}}\right) d x_{2}^{2}
\end{aligned}
$$

Strict Concavity/Convexity of a Multi-Variable Function

- Two Variable Case: Characterization of PD and ND

$$
H=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]
$$

The first leading principle minor is $\left|D_{1}\right|=f_{11}$.
The second leading principle minor $\left|D_{2}\right|=f_{11} f_{22}-f_{12} f_{21}$.

1. $d^{2} y$ is positive definite iff $f_{11}>0$ and $f_{11} f_{22}-f_{12}^{2}>0$ at all $\left(x_{1}, x_{2}\right) \in$ $\operatorname{lnt} X$
2. $d^{2} y$ is negative definite iff $f_{11}<0$ and $f_{11} f_{22}-f_{12}^{2}>0$ at all $\left(x_{1}, x_{2}\right) \in$ $\operatorname{Int} X$

- General Case: $y=f\left(x_{1}, \ldots, x_{n}\right)$

$$
H=\left[\begin{array}{ccc}
f_{11} & \cdots & f_{1 n} \\
\vdots & & \vdots \\
f_{n 1} & \cdots & f_{n n}
\end{array}\right]
$$

$$
\begin{aligned}
&\left|D_{1}\right|=\left|f_{11}\right|=f_{11} \\
&\left|D_{2}\right|=\left|\begin{array}{cc}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right|=f_{11} f_{22}-f_{12}^{2} \\
&\left|D_{3}\right|=\left|\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right| \\
& \vdots \\
&\left|D_{n}\right|=|H|
\end{aligned}
$$

- In general,

1. $d^{2} y$ is $P D$ iff $\left|D_{1}\right|>0,\left|D_{2}\right|>0, \ldots,\left|D_{n}\right|>0$ at every $\left(x_{1}, \ldots, x_{n}\right) \in$ $\operatorname{lnt} X$
2. $d^{2} y$ is $N D$ iff $\left|D_{1}\right|<0,\left|D_{2}\right|>0, \ldots,(-1)^{n}\left|D_{n}\right|>0$ at every $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{lnt} X$

- When $y=f\left(x_{1}, \ldots, x_{n}\right)$ be twice differentiable

1. f is strictly convex iff $d^{2} y$ is PD at every $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{lnt} X$.
2. f is strictly concave iff $d^{2} y$ is ND at every $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{lnt} X$. Example: $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}$

$$
H=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 4 & 0 \\
2 & 0 & 6
\end{array}\right]
$$

and $d y^{2}$ is PD .

Concavity/Convexity of a Multi-Variable Function

- The $k t h$ order leading principle minor of an $n \times n$ symmetric matrix is the determinant of the matrix obtained by deleting the last $n-k$ rows and $n-k$ columns. Consider H with $n \times n$. The kth order leading principal minor is

$$
\left|D_{k}\right|=\left|\begin{array}{ccc}
f_{11} & f_{12} \ldots & f_{1 k} \\
\vdots & & \vdots \\
f_{k 1} & f_{k 2} \ldots & f_{k k}
\end{array}\right|
$$

- A k th order principle minor of an $n \times n$ symmetric matrix is the determinant of a $k \times k$ matrix obtained by deleting $n-k$ rows and the corresponding $n-k$ columns
Example:

$$
H=\left[\begin{array}{ccc}
0 & 0 & 3 \\
0 & -2 & 0 \\
3 & 0 & -6
\end{array}\right]
$$

- $d^{2} y$ is positive semidefinite iff all principal minors are nonnegative
- $d^{2} y$ is negative semidefinite iff all the $k t h$ order principal minors are (i) nonnegative if k is even and (ii) nonpositive if k is odd
- Let $y=f\left(x_{1}, \ldots, x_{n}\right)$ be twice differentiable.

1. f is convex iff $d^{2} y$ is PSD at every $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Int} X$
2. f is convex iff $d^{2} y$ is NSD at every $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Int} X$

Example: principle minors

Optimization without Constraint: Local maximizer/minimizer by using Concavity/Convexity

- (One variable function) Let $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}$ be twice differentiable with continuous f^{\prime} and $f^{\prime \prime}$. Suppose that x^{*} is a stationary point in $\operatorname{Int} X\left(f^{\prime}\left(x^{*}\right)=0\right)$
- If $f^{\prime \prime}\left(x^{*}\right)<0$, then x^{*} is a local maximizer
- If x^{*} is a local maximizer, $f^{\prime \prime}\left(x^{*}\right) \leq 0$
- If $f^{\prime \prime}\left(x^{*}\right)>0$, then x^{*} is a local minimizer
- If x^{*} is a local minimizer, $f^{\prime \prime}\left(x^{*}\right) \geq 0$
- If $f^{\prime \prime}\left(x^{*}\right)=0$, then we do not know whether x is a local maximizer or minimizer without further investigation.

Example: $f(x)=x^{3}-12 x^{2}+36 x+8$

- (Multi variable function) Let $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}^{n}$ be twice differentiable with continuous $f_{i j}$ for all i, j. Suppose that $x^{*} \in \operatorname{Int} X$ is a stationary point $\left(f_{i}\left(x^{*}\right)=0\right.$ for all $\left.i\right)$
- If H is negative definite at $x=x^{*}$, then x^{*} is a local maximizer
- If x^{*} is a local maximizer, then H is negative semidefinite at $x=x^{*}$
- If H is positive definite at $x=x^{*}$, then x^{*} is a local minimizer
- If x^{*} is a local minimizer, then H is positive semidefinite at $x=x^{*}$

Example: $y=f(x)=-x_{1}^{3}+3 x_{1} x_{3}+2 x_{2}-x_{2}^{2}-3 x_{3}^{2}$

Optimization without Constraint: global maximizer/minimizer by using Concavity/Convexity

- (One-variable function) Let $f: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}$ be a differentiable function

1. If f is a concave function and $x^{*} \in \operatorname{lnt} X$ is a stationary point of f, then x^{*} is a global maximizer
2. If f is a convex function and $x^{*} \in \operatorname{lnt} X$ is a stationary point of f, then x^{*} is a global minimizer

- (One-variable function) Let $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}$ be a twice differentiable function.

1. If $f^{\prime \prime}(x) \leq 0$ for all $x \in X$ and $x^{*} \in \operatorname{Int} X$ is a stationary point of f, then x^{*} is a global maximizer
2. If $f^{\prime \prime}(x) \geq 0$ for all $x \in X$ and $x^{*} \in \operatorname{lnt} X$ is a stationary point of f, then x^{*} is a global minimizer

- Example: $f(x)=-2(x-1)^{2}$ with the domain $X=\mathbb{R}$
- (Multi-variable function) Let $f: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$ be a differentiable function

1. If f is concave and $x^{*} \in \operatorname{Int} X$ is a stationary point, then x^{*} is a global maximizer
2. If f is convex and $x^{*} \in \operatorname{lnt} X$ is a stationary point, then x^{*} is a global minimizer

- (Multi-variable case) Let $f: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}$ be a twice differentiable function with continuous $f_{i j}$ for all i, j

1. If f has negative semidefinite H at all $x \in X$ and $x^{*} \in \operatorname{lnt} X$ is a stationary point, then x^{*} is a global maximizer
2. If f has positive semidefinite H at all $x \in X$ and $x^{*} \in \operatorname{Int} X$ is a stationary point, then x^{*} is a global minimizer

- Example: A firm that produces two goods
$P_{1}=12, P_{2}=18$
$r=P_{1} x_{1}+P_{2} x_{2}$
$c\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}$
$\pi: X \rightarrow \mathbb{R}$ where $X=\mathbb{R}_{+}^{2}$
- Example: Firm's profit maximization

$$
Q(K, L)=L^{\alpha} K^{\alpha} \quad \alpha<\frac{1}{2} .
$$

- Example: A monopolist facing the three different markets
$R=R_{1}\left(Q_{1}\right)+R_{2}\left(Q_{2}\right)+R_{3}\left(Q_{3}\right)$
$C=C(Q)$ where $Q=Q_{1}+Q_{2}+Q_{3}$.
$\pi=R_{1}\left(Q_{1}\right)+R_{2}\left(Q_{2}\right)+R_{3}\left(Q_{3}\right)-C\left(Q_{1}+Q_{2}+Q_{3}\right)$
Let $P_{1}=63-4 Q_{1}, P_{2}=105-5 Q_{2}, P_{3}=75-6 Q_{3}$, and $C=20+15 Q$.

Optimization with Equality Constraints: Intuition with a Single Constraint

- $f: X \rightarrow \mathbb{R}$ where $X \subset \mathbb{R}^{n}$

$$
\begin{array}{ll}
\max _{x \in X} f(x) & \text { subject to } g(x)=c \\
\min _{x \in X} f(x) & \text { subject to } g(x)=c
\end{array}
$$

- Consider a two variable function $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}^{2}$ for the maximization problem: $\max _{x \in X} f(x) \quad$ subject to $g(x)=c$
Assume f and g are differentiable. Suppose that f is increasing in x. Consider a level curve of f for a

$$
L(a)=\{x \in X ; f(x)=a\}
$$

- Suppose that the maximal value of the function f is a^{*} at a solution $\left(x_{1}^{*}, x_{2}^{*}\right)$ for the maximization problem. Then, the constraint curve is tangent to $L\left(a^{*}\right)$ at $\left(x_{1}^{*}, x_{2}^{*}\right)$.

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)-c=0 \\
\Rightarrow g_{1}\left(x_{1}, x_{2}\right) d x_{1}+g_{2}\left(x_{1}, x_{2}\right) d x_{2}=0 \\
\Rightarrow \frac{d x_{2}}{d x_{1}}=-\frac{g_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{g_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}
\end{gathered}
$$

Furthermore,

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)-a^{*} & =0 \\
& \Rightarrow f_{1}\left(x_{1}, x_{2}\right) d x_{1}+f_{2}\left(x_{1}, x_{2}\right) d x_{2}=0 \\
& \Rightarrow \frac{d x_{2}}{d x_{1}}=-\frac{f_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{f_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}
\end{aligned}
$$

- Because the constraint curve is tangent to $L\left(a^{*}\right)$ at $\left(x_{1}^{*}, x_{2}^{*}\right)$, we have

$$
-\frac{g_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{g_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}=\frac{d x_{2}}{d x_{1}}=-\frac{f_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{f_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}
$$

- Letting $\frac{f_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{g_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}=\frac{f_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}{g_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}=\lambda^{*}$, the (first-order) necessary conditions are

$$
\begin{align*}
f_{1}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{1}\left(x_{1}^{*}, x_{2}^{*}\right) & =0 \tag{3}\\
f_{2}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{2}\left(x_{1}^{*}, x_{2}^{*}\right) & =0 \tag{4}\\
c-g\left(x_{1}^{*}, x_{2}^{*}\right) & =0 \tag{5}
\end{align*}
$$

- Set up the Lagrangian function as

$$
L\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right)+\lambda\left[c-g\left(x_{1}, x_{2}\right)\right]
$$

- Take the derivatives of $L\left(x_{1}, x_{2}\right)$ with respect to x_{1}, x_{2} and λ. Their values at the solution must be

$$
\begin{aligned}
\frac{\partial L}{\partial x_{1}}\left(x_{1}^{*}, x_{2}^{*}\right) & =f_{1}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=0 \\
\frac{\partial L}{\partial x_{2}}\left(x_{1}^{*}, x_{2}^{*}\right) & =f_{2}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{2}\left(x_{1}^{*}, x_{2}^{*}\right)=0 \\
\frac{\partial L}{\partial \lambda}\left(x_{1}^{*}, x_{2}^{*}\right) & =c-g\left(x_{1}^{*}, x_{2}^{*}\right)=0
\end{aligned}
$$

- Interpretation of the Lagrangian multiplier. Let $\left(x_{1}^{*}(c), x_{2}^{*}(c)\right)$ be a solution for $\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$ subject to $g\left(x_{1}, x_{2}\right)=c$. Taking the derivative of the maximum value function $f\left(x_{1}^{*}(c), x_{2}^{*}(c)\right)$ with respect to c yields

$$
\begin{aligned}
\frac{d f\left(x_{1}^{*}(c), x_{2}^{*}(c)\right)}{d c} & =f_{1}\left(x_{1}^{*}(c), x_{2}^{*}(c)\right) \frac{\partial x_{1}^{*}}{\partial c}+f_{2}\left(x_{1}^{*}(c), x_{2}^{*}(c)\right) \frac{\partial x_{2}^{*}}{\partial c} \\
& =\lambda^{*}\left[g_{1}\left(x_{1}^{*}(c), x_{2}^{*}(c)\right) \frac{\partial x_{1}^{*}}{\partial c}+g_{2}\left(x_{1}^{*}(c), x_{2}^{*}(c)\right) \frac{\partial x_{2}^{*}}{\partial c}\right] \\
& =\lambda^{*}
\end{aligned}
$$

The second equation comes from the first-order conditions, $f_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=$ $\lambda^{*} g_{1}\left(x_{1}^{*}, x_{2}^{*}\right)$ and $f_{2}\left(x_{1}^{*}, x_{2}^{*}\right)=\lambda^{*} g_{2}\left(x_{1}^{*}, x_{2}^{*}\right)$. The third equality can be shown by taking the total differential of the constraint:

$$
\begin{gathered}
g\left(x_{1}^{*}(c), x_{2}^{*}(c)\right)=c \\
\Rightarrow g_{1}\left(x_{1}^{*}(c), x_{2}^{*}(c)\right) \frac{\partial x_{1}^{*}}{\partial c}+g_{2}\left(x_{1}^{*}(c), x_{2}^{*}(c)\right) \frac{\partial x_{2}^{*}}{\partial c}=1
\end{gathered}
$$

- λ^{*} measures the effect of a marginal change in the constraint via c on the optimal value of the objective function.
- Example: $\max f\left(x_{1}, x_{2}\right)$ subject to $x_{1}+x_{2}=6$, where $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.

Optimization with Equality Constraints: Multiple Equality Constraints

- Consider a multi-variable with $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}^{n}$. Optimization problems with multiple equality constraints are

$$
\max _{x \in X} f(x) \text { or } \min _{x \in X} f(x) \text { subject to }\left\{\begin{array}{c}
g^{1}(x)=c^{1} \tag{6}\\
\vdots \\
g^{m}(x)=c^{m}
\end{array}\right.
$$

- The Lagrangian function for problem (6) is

$$
\begin{aligned}
L & =f(x)+\lambda_{1}\left[c^{1}-g^{\prime}(x)\right]+\lambda_{2}\left[c^{2}-g^{2}(x)\right]+\cdots+\lambda_{m}\left[c^{m}-g^{m}(x)\right](7) \\
& =f(x)+\sum_{j=1}^{m} \lambda_{j}\left[c^{j}-g^{j}(x)\right]
\end{aligned}
$$

- The first-order conditions for (7)

$$
\begin{array}{ll}
\frac{\partial L}{\partial x_{i}}=0 & \text { for } i=1, \ldots, n \\
\frac{\partial L}{\partial \lambda_{i}}=0 & \text { for } j=1, \ldots, m \tag{9}
\end{array}
$$

Optimization with Equality Constraints: Local maximizer (minimizer)

- Necessary condition for a local maximizer (minimizer)

If $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in \operatorname{Int} X$ is a local max (\min), then $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ and $\lambda^{*}=\left[\lambda_{1}^{*}, \ldots, \lambda_{n}^{*}\right]$ satisfy (8) and (9).

- Sufficient condition for a local maximizer (minimizer): TwoVariable and Single-Equality Constraint Case
Consider a two-variable objective function and a single constraint:

$$
\max _{\left(x_{1}, x_{2}\right)} f\left(x_{1}, x_{2}\right) \text { subject to } g\left(x_{1}, x_{2}\right)=c .
$$

Let $x_{2}=h\left(x_{1}\right)$ be the value of the second choice variable such that $g\left(x_{1}, h\left(x_{1}\right)\right)=c$ for all x. Let $F\left(x_{1}\right)=f\left(x_{1}, h\left(x_{1}\right)\right)$. Then, the maximization problem becomes $\max _{x_{1}} F\left(x_{1}\right)$. Taking the first-order derivative yields

$$
F^{\prime}\left(x_{1}\right)=f_{1}\left(x_{1}, h\left(x_{1}\right)\right)+f_{2}\left(x_{1}, h\left(x_{1}\right)\right) h^{\prime}\left(x_{1}\right)
$$

Taking the second-order derivative yields

$$
\begin{aligned}
F^{\prime \prime}\left(x_{1}\right)= & f_{11}\left(x_{1}, h\left(x_{1}\right)\right)+f_{12}\left(x_{1}, h\left(x_{1}\right)\right) h^{\prime}\left(x_{1}\right)+ \\
& f_{21}\left(x_{1}, h\left(x_{1}\right)\right) h^{\prime}\left(x_{1}\right)+f_{22}\left(x_{1}, h\left(x_{1}\right)\right)\left(h^{\prime}\left(x_{1}\right)\right)^{2} \\
& +f_{2}\left(x_{1}, h\left(x_{1}\right)\right) h^{\prime \prime}\left(x_{1}\right)
\end{aligned}
$$

$h^{\prime \prime}\left(x_{1}\right)$ can be derived from taking the second order derivative of $g\left(x_{1}, h\left(x_{1}\right)\right)=$ c with respect to x_{1}. It is messy but eventually we can express $F^{\prime \prime}\left(x_{1}^{*}\right)$ at $\left(x_{1}^{*}, x_{2}^{*}\right)$ as

$$
F^{\prime \prime}\left(x_{1}^{*}\right)=\frac{-|\bar{H}|}{g_{2}\left(x_{1}, h\left(x_{1}^{*}\right)\right)^{2}},
$$

where $|\bar{H}|$ is the Bordered Hessian of the Lagrangian.

$$
|\bar{H}|=\left|\begin{array}{ccc}
0 & g_{1}\left(x_{1}^{*}, x_{2}^{*}\right) & g_{2}\left(x_{1}^{*}, x_{2}^{*}\right) \\
g_{1}\left(x_{1}^{*}, x_{2}^{*}\right) & f_{11}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{11}\left(x_{1}^{*}, x_{2}^{*}\right) & f_{12}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{12}\left(x_{1}^{*}, x_{2}^{*}\right) \\
g_{2}\left(x_{1}^{*}, x_{2}^{*}\right) & f_{21}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{21}\left(x_{1}^{*}, x_{2}^{*}\right) & f_{22}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{22}\left(x_{1}^{*}, x_{2}^{*}\right)
\end{array}\right|
$$

- Sufficient condition for a local maximizer (minimizer): TwoVariable and Single-Equality Constraint Case
Suppose that $\left(x_{1}^{*}, x_{2}^{*}\right)$ and λ^{*} satisfy the first-order conditions

$$
\begin{aligned}
f_{1}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{1}\left(x_{1}^{*}, x_{2}^{*}\right) & =0, \\
f_{2}\left(x_{1}^{*}, x_{2}^{*}\right)-\lambda^{*} g_{2}\left(x_{1}^{*}, x_{2}^{*}\right) & =0, \\
g\left(x_{1}^{*}, x_{2}^{*}\right) & =c .
\end{aligned}
$$

If $|\bar{H}|>0$, then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a local maximizer of f subject to $g\left(x_{1}, x_{2}\right)=c$.
If $|\bar{H}|<0$, then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a local minimizer of f subject to $g\left(x_{1}, x_{2}\right)=c$.

- Sufficient condition for a local maximizer (minimizer): MultiVariable and Single-Equality Constraint Case
The Lagrangian function is $L=f(x)+\lambda[c-g(x)]$.

$$
\begin{aligned}
\left|\overline{H_{i}}\right| & =\left|\begin{array}{ccccc}
0 & g_{1} & g_{2} & \ldots & g_{i} \\
g_{1} & f_{11}-\lambda g_{11} & f_{12}-\lambda g_{12} & \ldots & f_{1 i}-\lambda g_{1 i} \\
g_{2} & f_{21}-\lambda g_{21} & f_{22}-\lambda g_{22} & \ldots & f_{2 i}-\lambda g_{2 i} \\
\vdots & \vdots & \vdots & & \vdots \\
g_{i} & f_{i 1}-\lambda g_{i 1} & f_{i 2}-\lambda g_{i 2} & \ldots & f_{i i}-\lambda g_{i i}
\end{array}\right| \\
\left|\overline{H_{n}}\right| & =|\bar{H}| \quad \text { (Bordered Hessian of the Lagrangian) }
\end{aligned}
$$

- Sufficient condition for a local maximizer (minimizer): MultiVariable and Single-Equality Constraint Case
Suppose that $x^{*}=\left[x_{1}^{*}, \ldots, x_{n}^{*}\right]$ and λ^{*} satisfy the first-order conditions f

$$
\begin{aligned}
f_{i}\left(x^{*}\right)-\lambda g_{i}\left(x^{*}\right) & =0 \text { for } i=1, \ldots, n \\
g\left(x^{*}\right)-c & =0
\end{aligned}
$$

If $\left|\overline{H_{2}}\right|>0,\left|\overline{H_{3}}\right|<0, \ldots,(-1)^{n}\left|\overline{H_{n}}\right|>0$ at $\left(x^{*}, \lambda^{*}\right)$, then x^{*} is a local maximizer of f subject to $g(x)=c$
If $\left|\overline{H_{2}}\right|<0,\left|\overline{H_{3}}\right|<0, \ldots,\left|\overline{H_{n}}\right|<0$ at $\left(x^{*}, \lambda^{*}\right)$, then x^{*} is a local minimizer of f subject to $g(x)=c$.
Example: $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ and $g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$

Optimization with Equality Constraints: Global Maximizer (Minimizer)

- Maximization problem with a single constraint

$$
\begin{equation*}
\max _{x \in X} f(x) \quad \text { subject to } \quad g(x)-c=0 \tag{10}
\end{equation*}
$$

- Minimization problem with a single constraint

$$
\begin{equation*}
\min _{x \in X} f(x) \quad \text { subject to } \quad g(x)-c=0 \tag{11}
\end{equation*}
$$

- Suppose that there exists λ^{*} such that x^{*} is a stationary point of $L=$ $f(x)+\lambda^{*}[c-g(x)]$ and $g\left(x^{*}\right)=c$.

1. x^{*} solves problem (10) if L is concave (f is concave and $\lambda^{*} g$ is convex)
2. x^{*} solves problem (11) if L is convex (f is convex and $\lambda^{*} g$ is concave)

- One useful result: If g is linear in x, then $\lambda^{*} g$ is both convex and concave. Therefore, if f is concave(convex), any stationary point $x^{*} \in \operatorname{lnt} X$ of L solves problem(10) (problem(11)).

Optimization with Equality Constraints: Example of Cost Minimization

- Firm's production function $Q=Q\left(x_{1}, x_{2}\right)$ with $Q_{1}>0$ and $Q_{2}>0$
- Cost of $\left(x_{1}, x_{2}\right): P_{1} x_{1}+P_{2} x_{2}$, where P_{1} and P_{2} are input prices
- Cost minimization problem

$$
\min _{x_{1}, x_{2}} P_{1} x_{1}+P_{2} x_{2} \text { subject to } Q_{0}=Q\left(x_{1}, x_{2}\right)
$$

- Lagrangian function

$$
L=P_{1} x_{1}+P_{2} x_{2}+\lambda\left[Q_{0}-Q\left(x_{1}, x_{2}\right)\right]
$$

- First-order conditions are

$$
\begin{align*}
& L_{1}=P_{1}-\lambda Q_{1}\left(x_{1}, x_{2}\right)=0 \tag{12}\\
& L_{2}=P_{2}-\lambda Q_{2}\left(x_{1}, x_{2}\right)=0 \tag{13}\\
& L_{\lambda}=Q_{0}-Q\left(x_{1}, x_{2}\right)=0 \tag{14}
\end{align*}
$$

- From (12) and (13)

$$
\frac{P_{1}}{Q_{1}}=\frac{P_{2}}{Q_{2}}=\lambda
$$

Alternatively, they induce

$$
\frac{P_{1}}{P_{2}}=\frac{Q_{1}}{Q_{2}},
$$

where P_{1} / P_{2} is the negative of the slope of isocosts and Q_{1} / Q_{2} is the absolute value of the slope of an isoquant (i.e., marginal rate of technical substitution of x_{1} for x_{2}).

- Bordered Hessian

$$
|\bar{H}|=\left|\begin{array}{ccc}
0 & Q_{1}\left(x_{1}^{*}, x_{2}^{*}\right) & Q_{2}\left(x_{1}^{*}, x_{2}^{*}\right) \\
Q_{1}\left(x_{1}^{*}, x_{2}^{*}\right) & -\lambda Q_{11}\left(x_{1}^{*}, x_{2}^{*}\right) & -\lambda Q_{12}\left(x_{1}^{*}, x_{2}^{*}\right) \\
Q_{2}\left(x_{1}^{*}, x_{2}^{*}\right) & -\lambda Q_{21}\left(x_{1}^{*}, x_{2}^{*}\right) & -\lambda Q_{22}\left(x_{1}^{*}, x_{2}^{*}\right)
\end{array}\right|
$$

If $|\bar{H}|<0$, then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a local minimizer.

- If there exists λ^{*} such that $P_{1} x_{1}+P_{2} x_{2}+\lambda^{*}\left[Q_{0}-Q\left(x_{1}, x_{2}\right)\right]$ is a convex function and $Q_{0}=Q\left(x_{1}^{*}, x_{2}^{*}\right)$, then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a global minimizer
- Since $P_{1} x_{1}+P_{2} x_{2}$ is linear, it is a convex function. Also, note that $\lambda^{*}=\frac{P_{1}}{Q_{1}}=\frac{P_{2}}{Q_{2}}>0$. Therefore, if $Q\left(x_{1}, x_{2}\right)$ is a concave function, then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a global minimizer.

Quasiconcavity/Quasiconvexity of a Function

- Consider a function $g: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}^{n}$. The upper level set of g for any $a \in \mathbb{R}$ is defined as

$$
P(a)=\{x \in X ; g(x) \geq a\}
$$

- Definition: A function $g: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$ is quasiconcave if $P(a)$ is convex for every a.
- The lower level set of g for any $a \in \mathbb{R}$ is defined as

$$
L(a)=\{x \in X ; g(x) \leq a\}
$$

- Definition: A function $g: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$ is quasiconvex if $L(a)$ is convex for every a.
- Alternative Definitions
- A function $g: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$ is quasiconcave if, for all $x, x^{\prime} \in X$ and all $\lambda \in[0,1]$

$$
g\left(\lambda x+(1-\lambda) x^{\prime}\right) \geq \min \left[g(x), g\left(x^{\prime}\right)\right]
$$

- A function $g: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$ is quasiconvex if, for all $x, x^{\prime} \in X$ and all $\lambda \in[0,1]$

$$
g\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \max \left[g(x), g\left(x^{\prime}\right)\right]
$$

- A function $g: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$ is strictly quasiconcave if, for all $x, x^{\prime} \in X\left(x \neq x^{\prime}\right)$ and all $\lambda \in(0,1)$

$$
g\left(\lambda x+(1-\lambda) x^{\prime}\right)>\min \left[g(x), g\left(x^{\prime}\right)\right]
$$

- A function $g: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$ is strictly quasiconvex if, for all $x, x^{\prime} \in X\left(x \neq x^{\prime}\right)$ and all $\lambda \in(0,1)$

$$
g\left(\lambda x+(1-\lambda) x^{\prime}\right)<\max \left[g(x), g\left(x^{\prime}\right)\right]
$$

- Useful properties

A concave function is quasiconcave.
A convex function is quasiconvex.

- Consider a twice differentiable function $g: X \rightarrow \mathbb{R}$ with a convex set $X \subset \mathbb{R}^{n}$.For $k=1, \ldots n$,

$$
B_{k}=\left[\begin{array}{ccccc}
0 & g_{1} & g_{2} & \ldots & g_{k} \\
g_{1} & g_{11} & g_{12} & \ldots & g_{1 k} \\
g_{2} & g_{21} & g_{22} & \ldots & g_{2 k} \\
\vdots & \vdots & \vdots & & \vdots \\
g_{k} & g_{k 1} & g_{k 2} & \ldots & f_{k k}
\end{array}\right]
$$

- If $\left|B_{1}\right|<0,\left|B_{2}\right|<0, \ldots,\left|B_{n}\right|<0$, then f is strictly quasiconvex
- If $\left|B_{1}\right|<0,\left|B_{2}\right|>0, \ldots,(-1)^{n}\left|B_{n}\right|>0$, then f is strictly quasiconcave
- If f is quasiconvex, then $\left|B_{1}\right| \leq 0,\left|B_{2}\right| \leq 0, \ldots,\left|B_{n}\right| \leq 0$
- If f is quasiconcave, then $\left|B_{1}\right| \leq 0,\left|B_{2}\right| \geq 0, \ldots,(-1)^{n}\left|B_{n}\right| \geq 0$

Optimization with Non-negativity Restrictions

- Consider a function $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}$.
- Maximization problem with non-negativity restriction

$$
\begin{equation*}
\max _{x} f(x) \text { subject to } x \geq 0 \tag{15}
\end{equation*}
$$

- If a solution x^{*} for problem (15) exists, then

$$
\text { (i) } f^{\prime}\left(x^{*}\right) \leq 0, \quad \text { (ii) } x^{*} \geq 0, \quad \text { (iii) } x^{*} \times f^{\prime}\left(x^{*}\right)=0
$$

The last condition means that at least one of x^{*} and $f^{\prime}\left(x^{*}\right)$ must be zero (complementary slackness between x and $f^{\prime}(x)$).

- In general, maximization problem with non-negativity restrictions for a multi-variable function $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}^{n}$

$$
\begin{equation*}
\max _{x} f(x) \text { subject to } x_{i} \geq 0 \text { forall } i=1, \ldots, n, \tag{16}
\end{equation*}
$$

where $x=\left[x_{1}, \ldots, x_{n}\right]$. First order conditions are
(i) $f_{i}\left(x^{*}\right) \leq 0, \quad$ (ii) $x_{i}^{*} \geq 0, \quad$ (iii) $x_{i}^{*} \times f_{i}\left(x^{*}\right)=0 \quad$ for all $i=1, \ldots, n$.
for all $i=1, \ldots, n$

Optimization with Inequality Constraints and Non-negativity Restrictions

- Consider an example with two inequality constraints and three choice variables (i.e., $x=\left[x_{1}, x_{2}, x_{3}\right]$)

$$
\max _{x} f(x) \text { subject to } \begin{gather*}
g^{1}(x) \leq c^{1} \\
g^{2}(x) \leq c^{2} \tag{17}\\
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{gather*}
$$

- Set up the Lagrangian function for problem (17) as

$$
\begin{equation*}
L=f(x)+\lambda_{1}\left[c^{1}-g^{1}(x)\right]+\lambda_{2}\left[c^{2}-g^{2}(x)\right] \tag{18}
\end{equation*}
$$

- Problem (17) can be transformed to

$$
\max _{x} f(x) \text { subject to } \begin{gather*}
g^{1}(x)+s^{1}=c^{1} \\
g^{2}(x)+s^{2}=c^{2} \tag{19}\\
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, s^{1} \geq 0, s^{2} \geq 0
\end{gather*}
$$

- Set up the Lagrangian function for problem (18) as

$$
\begin{equation*}
\bar{L}=f(x)+\lambda_{1}\left[c^{1}-s^{1}-g^{1}(x)\right]+\lambda_{2}\left[c^{2}-s^{2}-g^{2}(x)\right] \tag{20}
\end{equation*}
$$

- First order conditions for a solution for (20) is

$$
\begin{align*}
& \frac{\partial \bar{L}}{\partial x_{i}} \leq 0, \quad x_{i}^{*} \geq 0, \quad x_{i}^{*} \times \frac{\partial \bar{L}}{\partial x_{i}}=0 \quad \text { for all } i=1,2,3 \tag{21}\\
& \frac{\partial \bar{L}}{\partial s^{j}} \leq 0, \quad s^{j} \geq 0, \quad s^{j} \times \frac{\partial \bar{L}}{\partial s^{j}}=0 \quad \text { for all } j=1,2 \tag{22}\\
& \frac{\partial \bar{L}}{\partial \lambda_{j}}=c^{j}-s^{j}-g^{j}\left(x^{*}\right)=0 \quad \text { for all } j=1,2 \tag{23}
\end{align*}
$$

- From (22) and (23), we have

$$
\begin{aligned}
\frac{\partial \bar{L}}{\partial s^{j}} & =-\lambda_{j}^{*} \leq 0 \Leftrightarrow \lambda_{j}^{*} \geq 0 \\
s^{j} & =c^{j}-g^{j}\left(x^{*}\right) \geq 0
\end{aligned}
$$

Hence the first order conditions, (21) to (23), can be rewritten as

$$
\begin{gather*}
\frac{\partial \bar{L}}{\partial x_{i}} \leq 0, \quad x_{i}^{*} \geq 0, \quad x_{i}^{*} \times \frac{\partial \bar{L}}{\partial x_{i}}=0 \quad \text { for all } i=1,2,3 \tag{24}\\
\lambda_{j}^{*} \geq 0, \quad c^{j}-g^{j}\left(x^{*}\right) \geq 0, \quad \lambda_{j}^{*} \times\left[c^{j}-g^{j}\left(x^{*}\right)\right]=0 \text { for all } j=1,2 \tag{25}
\end{gather*}
$$

- (24) and (25) can be equivalently expressed as the following first-order conditions for the Lagrangian function in (18)

$$
\begin{array}{ll}
\frac{\partial L}{\partial x_{i}} \leq 0, \quad x_{i}^{*} \geq 0, \quad x_{i}^{*} \times \frac{\partial L}{\partial x_{i}}=0 \quad \text { for all } i=1,2,3 \\
\frac{\partial L}{\partial \lambda_{j}} \geq 0, \quad \lambda_{j}^{*} \geq 0, \quad \lambda_{j}^{*} \times \frac{\partial L}{\partial \lambda_{j}}=0 \quad \text { for all } j=1,2
\end{array}
$$

- Generally, consider the following maximization problem

$$
\max _{x} f(x) \text { subject to } \begin{gather*}
g^{j}(x) \leq c^{j} \text { for all } j=1, \ldots, m \tag{26}\\
x_{i} \geq 0 \text { for all } i=1, \ldots, n
\end{gather*}
$$

The Lagrangian function for problem (26) is

$$
L=f(x)+\sum_{j=1}^{m} \lambda_{j}\left[c^{j}-g^{j}(x)\right]
$$

and the Kuhn-Tucker Conditions are

$$
\begin{array}{lll}
\frac{\partial L}{\partial x_{i}} \leq 0, & x_{i}^{*} \geq 0, & x_{i}^{*} \times \frac{\partial L}{\partial x_{i}}=0
\end{array} \quad \text { for all } i=1, \ldots, n
$$

- Arrow-Enthoven Sufficiency Theorem: Quasiconcave Programming

If the following conditions are satisfied:
(a) x^{*} satisfies the Kuhn-Tucker conditions
(b) each g^{j} is differentiable and quasiconvex in \mathbb{R}_{+}^{n}
(c) f is differentiable and it is [concave] or [quasiconcave in \mathbb{R}_{+}^{n} and the n derivatives $f_{i}\left(x^{*}\right)$ are not all zero and f is twice differentiable in the neighborhood of x^{*}] or [quasiconcave in \mathbb{R}_{+}^{n} and $f_{i}\left(x^{*}\right)<0$ for at least one x_{i}] or [quasiconcave in \mathbb{R}_{+}^{n} and $f_{i}\left(x^{*}\right)>0$ for some x_{j} that can take on a positive value without violating the constraints],
then x^{*} is a solution to the maximization problem.

- Generally, consider the following maximization problem

$$
\min _{x} f(x) \text { subject to } \begin{gather*}
g^{j}(x) \geq c^{j} \text { for all } j=1, \ldots, m \tag{27}\\
x_{i} \geq 0 \text { for all } i=1, \ldots, n
\end{gather*}
$$

The Lagrangian function for problem (26) is

$$
L=f(x)+\sum_{j=1}^{m} \lambda_{j}\left[c^{j}-g^{j}(x)\right]
$$

and the Kuhn-Tucker Conditions are

$$
\begin{array}{ll}
\frac{\partial L}{\partial x_{i}} \geq 0, \quad x_{i}^{*} \geq 0, \quad x_{i}^{*} \times \frac{\partial L}{\partial x_{i}}=0 \quad \text { for all } i=1, \ldots, n \\
\frac{\partial L}{\partial \lambda_{j}} \leq 0, \quad \lambda_{j}^{*} \geq 0, \quad \lambda_{j}^{*} \times \frac{\partial L}{\partial \lambda_{j}}=0 \quad \text { for all } j=1, \ldots, m
\end{array}
$$

- Arrow-Enthoven Sufficiency Theorem: Quasiconvex Programming

If the following conditions are satisfied:
(a) x^{*} satisfies the Kuhn-Tucker conditions
(b) each g^{j} is differentiable and quasiconcave in \mathbb{R}_{+}^{n}
(c) f is differentiable and it is [convex] or [quasiconvex in \mathbb{R}_{+}^{n} and the n derivatives $f_{i}\left(x^{*}\right)$ are not all zero and f is twice differentiable in the neighborhood of x^{*}] or [quasiconvex in \mathbb{R}_{+}^{n} and $f_{i}\left(x^{*}\right)>0$ for at least one x_{i}] or [quasiconvex in \mathbb{R}_{+}^{n} and $f_{i}\left(x^{*}\right)<0$ for some x_{j} that can take on a positive value without violating the constraints],
then x^{*} is a solution to the minimization problem.

Optimization with Inequality Constraints and Non-negativity Constraints: Examples

- Example 1: A decision maker wants to find out (x_{1}, x_{2}) that maximizes $x_{1}+x_{2}^{1 / 2}$ subject to (i) $x_{1}+b x_{2} \leq 1$, (ii) $x_{1} \geq 0$, (iii) $x_{2} \geq 0$. Assume that $b>0$.
The Lagrangean function is

$$
L=x_{1}+x_{2}^{1 / 2}+\lambda\left[1-x_{1}-b x_{2}\right]
$$

Kuhn-Tucker conditions are

$$
\begin{aligned}
L_{1} & =1-\lambda \leq 0, \quad x_{1} \geq 0, \quad L_{1} x_{1}=0 \\
L_{2} & =\frac{1}{2} x_{2}^{-1 / 2}-\lambda b \leq 0, \quad x_{2} \geq 0, \quad L_{2} x_{2}=0 \\
L_{\lambda} & =1-x_{1}-b x_{2} \geq 0, \quad \lambda \geq 0, \quad L_{\lambda} \lambda=0
\end{aligned}
$$

Derive the solution to the problem.
Case 1) $x_{1}=0$ and $x_{2}=0$. Then $L_{\lambda}=1>0$ and $L_{2}=-\lambda b \leq 0$. Therefore, $\lambda \geq 1 / b$. So, this violates the condition $L_{\lambda} \lambda=0$. This means that $x_{1}=0$ and $x_{2}=0$ is not part of a solution.
Case 2) $x_{1}>0$ and $x_{2}=0$. Then, $L_{1}=1-\lambda=0$. Therefore, $\lambda=1$. Note that as $x_{2} \rightarrow 0, L_{2} \rightarrow \infty$. Therefore, this is not part of a solution. Case 3) $x_{1}=0$ and $x_{2}>0$. Then, $L_{1}=1-\lambda \leq 0$. So, $\lambda \geq 1$. Then, $L_{\lambda}=$ $1-b x_{2}=0 . x_{2}=1 / b \geq 0$. Then, $L_{2}=\frac{1}{2} b^{1 / 2}-\lambda b=0 . \lambda=\frac{1}{2} b^{-1 / 2} \geq 1$. So, $0<b \leq 1 / 4$.
Case 4) $x_{1}>0$ and $x_{2}>0$. Then, $\lambda=1$ from $L_{1}=1-\lambda=0$. We have $x_{2}=1 / 4 b^{2}$ from $L_{2}=\frac{1}{2} x_{2}^{-1 / 2}-\lambda b=0 . x_{1}=(4 b-1) / 4 b>0$. Therefore, $b>1 / 4$.
From all the possible cases, we have

$$
\left(x_{1}^{*}, x_{2}^{*}\right)=\left\{\begin{array}{cc}
\left(0, \frac{1}{b}\right) & \text { if } 0<b \leq 1 / 4 \\
\left(\frac{4 b-1}{4 b}, \frac{1}{4 b^{2}}\right) & \text { if } b>1 / 4
\end{array}\right.
$$

Note that the objective function is a concave function and the function appeared in the constraint is a convex function. Furthermore, at least one of the first-order derivatives of the objective function evaluated at $\left(x_{1}^{*}, x_{2}^{*}\right)$ is not zero. Therefore, $\left(x_{1}^{*}, x_{2}^{*}\right)$ is the solution to the problem.

- Example 2: War time rationing.

A consumer's utility function is $U\left[x_{1}, x_{2}\right]=x_{1} x_{2}^{2}$ in a two-good economy with $p_{1}=1, p_{2}=1$ and $I=100$. Rationing constraint is $2 x_{1}+x_{2} \leq 120$. The consumer's maximization problem is

$$
\begin{array}{lc}
& x_{1}+x_{2} \leq 100 \\
\max U\left[x_{1}, x_{2}\right] \text { subject to } \begin{array}{c}
\\
2 x_{1}+x_{2} \leq 120 \\
\\
x_{1} \geq 0, x_{2} \geq 0
\end{array}
\end{array}
$$

The Lagrangian function is then

$$
L=x_{1} x_{2}^{2}+\lambda_{1}\left[100-x_{1}-x_{2}\right]+\lambda_{2}\left[120-2 x_{1}-x_{2}\right]
$$

The Kuhn-Tucker conditions are

$$
\begin{aligned}
L_{1} & =x_{2}^{2}-\lambda_{1}-2 \lambda_{2} \leq 0, \quad x_{1} \geq 0, \quad x_{1} \times L_{1}=0 \\
L_{2} & =2 x_{1} x_{2}-\lambda_{1}-\lambda_{2} \leq 0, \quad x_{2} \geq 0, \quad x_{2} \times L_{2}=0 \\
L_{\lambda_{1}} & =100-x_{1}-x_{2} \geq 0, \quad \lambda_{1} \geq 0, \quad \lambda_{1} \times L_{\lambda_{1}}=0 \\
L_{\lambda_{2}} & =120-2 x_{1}-x_{2} \geq 0, \quad \lambda_{2} \geq 0, \quad \lambda_{2} \times L_{\lambda_{2}}=0
\end{aligned}
$$

