OPTIMIZATION

SEUNGJIN HAN

September, 2017



Optimization Problem
e Maximization Problem
max f(z) subject to =z € C, (1)
where C' is the constraint set and z is the choice variable.
e Minimization Problem
mxin g(x) subject to z € D, (2)
where D is the constraint set and x is the choice variable.

e Let x* be a solution to problem (1). By definition of z*, f(x*)
for all x € C. x* is a (global) maximizer of f subject to z € C' an
is the maximum of f subject to x € C.

f(x)
f@)

>
d

e 1’ is a local maximizer of f subject to z € C' if there is a number ¢ > 0
such that f(z') > f(x) for all x € C such that the distance between x
and 2’ is at most €

e Any global maximizers are local maximizers.

e Note that the following two problems are equivalent

min g(z) subjectto x € D

T

< max(—g(z)) subjectto x€ D

X

e Extreme Value Theorem

A function f: X — R has a maximizer and a minimizer if

1. f is continuous

2. X C R" is nonempty and compact

Optimization without Constraint: General Method
e Consider a function f : X — R and the maximization problem
max f(z)
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e Suppose that f is differentiable and X = [z, 7]
e 1 is a stationary point x if f'(z) =0

e Being a stationary point is neither a necessary condition nor a sufficient
condition for finding the solution

e Suppose that f : X — R is differentiable and X = [z, Z]. If x € Int[z, 7]
is a global (or local) maximizer (or minimizer) of f, then f'(z) =0

e General Method for a one-variable function: How to find a solution to
max, f(x). Assume that f : X — R is differentiable and X = [z, 7]

1. Find all stationary points in X and values of f
2. Find values of f at the endpoints of X

3. Compare functional values of points in 1 and 2 for global maximizers.

e Example: y = f(z) = —2(x — 1)? on z € [0, 2]
f'(x) = —4(x — 1) = 0 so that = 1 is the stationary point. f(1) =
0, f(0) = =2 and f(2) = —2 so the global maximizer is z = 1.

e Suppose that f: X — R is differentiable and X C R" is a compact set.
If z € IntX is a global (or local) maximizer (or minimizer), then

fil) =0, folw)=0, ..., fu(z)=0

e General Method for multi-variable case: How to find a solution to max, f(z).
Assume that f: X — R is differentiable and X C R" is a compact set.

1. Find all stationary points in X and values of f at the stationary
points

2. Find values of f at all the boundary points of X

3. Compare functional values of points in 1 and 2 for global maximizers

e Note: Suppose X is not a compact set. Then, we may not have a global
maximizer even if f is differentiable.
Example: f: X — R where X = R = (—00,00) and f(z) = x* for all
reX

e Sometimes, it is hard to find the values of f at all the boundary points
in X CR"



Definition: Concavity/Convexity of a Function

e Convex Set
A set C' C R" is convex if, for all z,2" € C' and all X € [0, 1]

A+ (1=N2' eC

Example: [0,1] is a convex set

e Concave Function

A function f : X — R defined on the convex set X C R" is concave if,
for all z,2' € X and all A € [0, 1]

fOz+ (1 =N)2') > M(2) + (1 = A f(a)

e Strictly Concave Function

A function f : X — R defined on the convex set X C R”" is strictly
concave if, for all z, 2" € X such that x # 2’ and all A € (0,1)

fOx+ (1 =XN2") > Af(x)+ (1 =N f(2)

e Convex Function

A function f : X — R defined on the convex set X C R" is convex if,
for all x,2’ € X and all X € [0, 1]

fOz+ (1 =N2) < Mf(2) + (1= N f(a)

e Strictly Convex Function

A function f : X — R defined on the convex set X C R" is strictly
convex if, for all z, 2’ € X such that x # 2’ and all A € (0, 1)

fOx+ (1 =Nz < Af(x)+ (1 =N f(z)

One-Variable Function

e Consider a function f: X — R with X C R

e A twice continuously differentiable function f is (strictly) concave if and
only if f"(z) < 0(f"(x) < 0) for all z € IntX
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e A twice continuously differentiable function f is (strictly) convex if and
only if f”(z) > 0(f"(x) > 0) for all z € IntX.

Multi-Variable Function

e Consider a function f: X — R with X C R"
y:f(xla--'axn)

e Example with two variables; y = f(x1, x2)

When the function is twice differentiable, we have

dy = fidxy + fadzs

_Ody Ody
d(dy) = a—xldxl + 85[2 deQ

= (fudxy + fordzs)dxy + (frodzy + foodxs)dxs
= fudas + 2fiadwidrg + foodxs

d
= Lo o) [ 12 2] [ 0]

e PD, ND, PSD, and NSD

1. d?y is positive definite if d?y > 0 at do; # 0 and dxy # 0
2. d%y is negative definite if d>y < 0 at dz; # 0 and dzy # 0
3. d?y is positive semidefinite if d*>y > 0 at any (dw1, dzs)
4. d?*y is negative semidefinite if d?y < 0 at any (dzy, dxs)

e In the example, rearranging d?y yields

J12 1, 14
dZZU = Ju (dﬁ + 2—dz1dzs + —dm%) + <f22 — _> dxg

fu I4 fu
2
= fi <daz1 4+ @d;@) 4+ (M) dx%
fi fu

Strict Concavity/Convexity of a Multi-Variable Function



e T'wo Variable Case: Characterization of PD and ND

| S fi2
H= [le f22]

The first leading principle minor is |Dq| = fi1.
The second leading principle minor ‘DQ‘ = f11f22 — f12f21.
1. d?y is positive definite iff f;; > 0 and f11f22—f122 > 0 at all (z1,x2) €
IntX
2. d*y is negative definite iff fi; < 0 and fi1 fao— f5 > 0 at all (z1, 22) €
IntX

e General Case: y = f(x1,...,2,)

fll fln
H=| : s
fnl fnn
‘D1|:|f11|:f11
|Da| = ji; gj = firfoe — f5
Ju Sz fi3
D3| = | for fao fos
f31 fa2 f33
|Dn| = |H|

e In general,

1. d?yis PDiff |Dy| > 0,]Dy| > 0,...,|D,| > 0 at every (xq,...,2,) €
Int X

2. d*y is ND iff |Dy| < 0,|Dy] > 0,...,(=1)"|D,| > 0 at every
(x1,...,2p) € IntX

e When y = f(x1,...,x,) be twice differentiable
1. f is strictly convex iff d?y is PD at every (z1,...,,) € IntX.

5



2. f is strictly concave iff d?y is ND at every (x1,...,x,) € IntX.
Example: f(x1, 2o, 13) = 2% + 203 + 323 + 22129 + 27173

2
H=12
2

O B~ N

2
0
6
and dy? is PD.

Concavity /Convexity of a Multi-Variable Function

e The kth order leading principle minor of an n X n symmetric matrix is
the determinant of the matrix obtained by deleting the last n — k rows
and n — k columns. Consider H with n x n. The kth order leading
principal minor is

fu fizoo fu

Dy =| :

fer fr2ooo S

e A kth order principle minor of an n X n symmetric matrix is the de-
terminant of a £ X k matrix obtained by deleting n — k£ rows and the
corresponding n — k columns

Example:
0O 0 3
H=10 -2 0
3 0 —6

e d%y is positive semidefinite iff all principal minors are nonnegative

e d?y is negative semidefinite iff all the kth order principal minors are (i)
nonnegative if k is even and (ii) nonpositive if k is odd

e Let y = f(xy,...,2,) be twice differentiable.

1. fis convex iff d*y is PSD at every (z1,...,x,) € IntX
2. f is convex iff d?y is NSD at every (z1,...,2,) € IntX

Example: principle minors



Optimization without Constraint: Local maximizer/minimizer by
using Concavity /Convexity

e (One variable function) Let f : X — R with X C R be twice differen-
tiable with continuous f’ and f”. Suppose that z* is a stationary point
in IntX (f'(z*) =0)

— If f"(2*) < 0, then z* is a local maximizer
— If 2* is a local maximizer, f”(z*) <0
— If f"(2*) > 0, then 2* is a local minimizer
— If 2* is a local minimizer, f”(z*) >0

— If f"(2*) = 0, then we do not know whether z is a local maximizer
or minimizer without further investigation.

Example: f(z) = 2® — 1222 + 362 + 8

e (Multi variable function) Let f : X — R with X C R" be twice dif-
ferentiable with continuous f;; for all 4, j. Suppose that 2* € IntX is a
stationary point (f;(z*) = 0 for all 7)

— If H is negative definite at x = x*, then z* is a local maximizer
— If 2 is a local maximizer, then H is negative semidefinite at x = z*
— If H is positive definite at = x*, then x* is a local minimizer

— If 2* is a local minimizer, then H is positive semidefinite at z = x*
Example: y = f(z) = —a} 4+ 3123 + 229 — 23 — 323
Optimization without Constraint: global maximizer/minimizer by
using Concavity /Convexity

e (One-variable function) Let f : X — R with a convex set X C R be a
differentiable function

1. If f is a concave function and z* € IntX is a stationary point of f,
then z* is a global maximizer

2. If f is a convex function and x* € IntX is a stationary point of f,
then x* is a global minimizer
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e (One-variable function) Let f: X — R with X C R be a twice differen-
tiable function.

L. If f"(x) <0 for all x € X and z* € IntX is a stationary point of f,
then x* is a global maximizer

2. If f"(z) > 0 for all z € X and z* € IntX is a stationary point of f,
then x* is a global minimizer

e Example: f(z) = —2(x — 1)? with the domain X = R

e (Multi-variable function) Let f : X — R with a convex set X C R" be
a differentiable function

1. If f is concave and x* € IntX is a stationary point, then x* is a
global maximizer

2. If f is convex and z* € IntX is a stationary point, then x* is a global

minimizer

e (Multi-variable case) Let f : X — R with a convex set X C R be a
twice differentiable function with continuous f;; for all ¢, j

1. If f has negative semidefinite H at all z € X and z* € IntX is a
stationary point, then z* is a global maximizer

2. If f has positive semidefinite H at all x € X and x* € IntX is a
stationary point, then z* is a global minimizer

e Example: A firm that produces two goods
P =12,P, =18
r= Pix1 + Poxo
c(x1,x9) = 223 + w122 + 275

W:X%RwhereX:Ri

e Example: Firm’s profit maximization
Q(K,L) = L°K* o< 3.

e Example: A monopolist facing the three different markets
R = Ri(Q1) + R2(Q2) + R3(Q3)
C = C(Q) where Q = Q1 + Q2 + Qs.
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T = Ri(Q1) + Ra(Q2) + R3(Q3) — C(Q1 + Q2+ Q3)
Let Py = 63 — 40y, Py = 105 — 5Qy, Py = 75 — 605, and C = 20 + 150).

Optimization with Equality Constraints: Intuition with a Single
Constraint

e f: X — R where X C R"”
max f(x) subject to g(z) = ¢
re
mi)I(l f(x) subject to g(z) = ¢
HAS

e Consider a two variable function f: X — Rwith X C R? for the maxi-
mization problem: max,cx f(x) subject to g(z) = ¢

Assume f and ¢ are differentiable. Suppose that f is increasing in x.
Consider a level curve of f for a

L(a) = {o € X f(2) = a}

e Suppose that the maximal value of the function f is a* at a solution
(x7, %) for the maximization problem. Then, the constraint curve is
tangent to L(a*) at (27, x3).

g(xlaxQ) —c=0
= g1(21, x9)dx1 + g2(21, 22)d2re = 0

d * *

_, Gz _ _gl(xi,xi)
dz g2(7, 73)

Furthermore,
f(xlaxQ)_a/* = 0

= fl(xla x2)dx1 + fQ(ZUl,ZUQ)dl'Q =0
d * *

- L2 :_fl(xiaxi)
dz fa(7, 23)

e Because the constraint curve is tangent to L(a*) at (z7, x3), we have

Cqi(@fas)  dry  fi(@d,ah)

g2(xt, 23)  dx fo(x}, z3)
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o Letting L481:02) — LWL3) — \* the (first-order) necessary conditions are
g1(x7,23) g2(a7,3)

filay, o) = Agu(ay, @5) = 0 (3)
fawy, w3) — Aga(ay, 5) = 0 (4)
¢c—g(xy,z3) = 0 ()

e Set up the Lagrangian function as
L(z1,29) = f(x1,72) + Alc — g1, 72)]

e Take the derivatives of L(x1,x2) with respect to x1,z9 and A. Their
values at the solution must be

OL

a_ajl(ff’x;) = fl@ﬁ? l‘;) - )‘*gl(ffvxg) =0
aL * * * * * * *
a_xz(xbxz) = fo(a],73) — A 92(%»552) =0
aL b3 * % *

a(xla%) = c—g(zy,73) =0

e Interpretation of the Lagrangian multiplier. Let (x}(c), z5(c)) be a solu-
tion for max,, ., f(z1,x2) subject to g(z1, z9) = c. Taking the derivative
of the maximum value function f(x3(c),x3(c)) with respect to ¢ yields

TEACLBD _ fy(w1(0), 136D T+ ol (), a3(e)
= X i) 73D 25 1 (i (0) a5(e) 2

The second equation comes from the first-order conditions, fi(z},z3) =
Ngi(z7,x3) and fo(x],x5) = N'go(x}, x3). The third equality can be
shown by taking the total differential of the constraint:

o(ri(e). 75(0) = ¢
= (w10, 736D T 4 go(ai (), 23(0) 2 = 1

e \* measures the effect of a marginal change in the constraint via ¢ on
the optimal value of the objective function.
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e Example: max f(x1,x9) subject to x1 + x9 = 6, where f(z1,x2) = x179.

Optimization with Equality Constraints: Multiple Equality Con-
straints

e Consider a multi-variable with f : X — R with X C R"”. Optimization
problems with multiple equality constraints are

max f(x) or min f(x) subject to : (6)
reX zeX

e The Lagrangian function for problem (6) is
L = f(x)+ Ml =g @)+ X[c® = ¢*(@)] + -+ Aple™ — g™ (2)[7)

= f@)+ YAl - g @)

e The first-order conditions for (7)

oL :
o 0 fori=1,...,n (8)
oL :
o 0 forj=1,....,m (9)

Optimization with Equality Constraints: Local maximizer (mini-
mizer)

e Necessary condition for a local maximizer (minimizer)

If * = (2F,...,2)) € IntX is a local max (min), then z* = (27,...,2})

and \* = [A\],..., \] satisfy (8) and (9).

’'n

e Sufficient condition for a local maximizer (minimizer): Two-
Variable and Single-Equality Constraint Case

Consider a two-variable objective function and a single constraint:

max f(x1,x2) subject to g(x1,x2) = c.
(1‘1,1‘2)
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Let 9 = h(x;) be the value of the second choice variable such that
g(x1,h(x1)) = c for all z. Let F(z1) = f(x1,h(x1)). Then, the maxi-
mization problem becomes max,, F'(xr1). Taking the first-order deriva-
tive yields

F'(z1) = fi(zy, h(21)) + fozr, h(21))R (21)

Taking the second-order derivative yields

F'(21) = fule, b)) + fra(og, h(z))h (21) +
for(z1, h(z1))W (21) + faa(y, h(a1)) (W (21))?
+ fo(1, h(x1))R" (21)
h"(x1) can be derived from taking the second order derivative of g(z1, h(x1)) =

¢ with respect to x;. It is messy but eventually we can express F”(z7)
at (z7,x3) as

h
h

—|H|
g2(1, h(x7]))?’

where ‘F‘ is the Bordered Hessian of the Lagrangian.

F'(x}) =

- 0 g1 (7, z3) g2(x7, %)
|H| = | gi(a7,25) fu(a,zs) — Ngn(af, o3)  fra(e], z3) — N gia(af, 23)
92(:5{737;) f21(x>{7$§) - )‘*g2l($>{7$§) f22($>{7x;) - /\*922(xi<7$§)

Sufficient condition for a local maximizer (minimizer): Two-
Variable and Single-Equality Constraint Case
Suppose that (z7,x3) and A" satisfy the first-order conditions

fiwy,w3) = Ngi(ey,25) = 0,

fawy, w3) = Aga(ay, 3) = 0,

glat,zy) = c
If [H| > 0, then (27, 3) is a local maximizer of f subject to g(z1, z2) = c.
If |ﬁ| < 0, then (27, z3) is a local minimizer of f subject to g(x1,x2) = c.

Sufficient condition for a local maximizer (minimizer): Multi-
Variable and Single-Equality Constraint Case

The Lagrangian function is L = f(z) + A[c — g(x)].
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0 g1 g2 ce gi
L g1 Ju—Agu fiz—Agi2 ... fii— Agui
{Hz‘ =192 fa—Aga1 foo—Agn ... fou— Mg
i fit—Agin fio —Agiz ... fii — AGii
|H,| = |H] (Bordered Hessian of the Lagrangian)

e Sufficient condition for a local maximizer (minimizer): Multi-
Variable and Single-Equality Constraint Case

Suppose that * = [x],..., 2] and \* satisfy the first-order conditions f

fi(z*) = Agi(z*) = Ofori=1,....n
glx*)—c = 0

If !FQ} > 0, ‘E! <0,...,(=1)" ‘Fn‘ > 0 at (z*,\"), then z* is a local
maximizer of f subject to g(x) = ¢

If ‘E’ < 0, E‘ <0,..., ‘Fn| < 0 at (z*,\"), then x* is a local mini-
mizer of f subject to g(x) = c.

Example: f(x1,22) = 129 and g(x1, 22) = 21 + 29

Optimization with Equality Constraints: Global Maximizer (Min-
imizer)

e Maximization problem with a single constraint

max f(z) subject to  g(z) —c=0 (10)
HAS

e Minimization problem with a single constraint

m1)1(1 f(x) subject to  g(x) —c=10 (11)
Tre

e Suppose that there exists A" such that z* is a stationary point of L =
flx) + Xe—g(x)] and g(2") = c.

1. z* solves problem (10) if L is concave (f is concave and A*g is convex)

2. x* solves problem (11) if L is convex (f is convex and A*g is concave)
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e One useful result: If g is linear in x, then A*g is both convex and concave.
Therefore, if f is concave(convex), any stationary point z* € IntX of L
solves problem(10) (problem(11)).

Optimization with Equality Constraints: Example of Cost Mini-
mization

e Firm’s production function @ = Q(z1,x2) with @1 > 0 and Q2 > 0

e Cost of (x1,23) : Pix1 + Paxo, where Py and P; are input prices

e Cost minimization problem

min Pix; + Poxs subject to Qo = Q(x1, x2)

T1,T2

e Lagrangian function

L = Pixy + Poyxg + A[Qo — Q(x1, 22)]

e [irst-order conditions are

L1 = P1 — )\Ql(ﬂjl, 5132) =0 (12)
L2 = P2 - )\QQ(CEl, 332) =0 (13)
Ly = Qo—Qx1,22) =0 (14)

e From (12) and (13)

A_p_,
Q1 Q2
Alternatively, they induce
b_ G
Py Qo

where P;/P; is the negative of the slope of isocosts and @1/Q is the
absolute value of the slope of an isoquant (i.e., marginal rate of technical
substitution of x; for xs).

e Bordered Hessian
0 Ql(vaxg) QQ(vaxE)

H| = | Qi(a},23) —AQu(af,23) —AQua(], 73)
Q2(z1, 23) —AQa1(x],75) —AQa (27, 75)

If ’F| < 0, then (z7,23) is a local minimizer.
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e If there exists A" such that Pizy + Poxs + N [Qo — Q(x1, 22)] is a convex
function and Qy = Q(x7, z3), then (z7, 23) is a global minimizer

e Since Pyxq + Poxo is linear, it is a convex function. Also, note that

A= % = % > (0. Therefore, if Q(z1,x2) is a concave function, then

(x7, %) is a global minimizer.

Quasiconcavity /Quasiconvexity of a Function

e Consider a function g : X — R with X C R". The upper level set of g
for any a € R is defined as

P(a) ={z € X;9(x) > a}

e Definition: A function g : X — R with a convex set X C R" is quasi-
concave if P(a) is convex for every a.

e The lower level set of g for any a € R is defined as
L(a) ={z € X;g9(x) < a}

e Definition: A function g : X — R with a convex set X C R" is quasi-
convex if L(a) is convex for every a.

e Alternative Definitions

— A function g : X — R with a convex set X C R" is quasiconcave if,
for all x,2/ € X and all A € [0, 1]

g Az + (1 —N)2') > min[g(z), g(a")]

— A function g : X — R with a convex set X C R" is quasiconvex if,
for all x,2’ € X and all X € [0, 1]

g9 (Az + (1 = N)2') < max[g(z), g(z')]

— A function g : X — R with a convex set X C R" is strictly quasi-
concave if, for all z, 2’ € X (x # 2’) and all A € (0,1)

g9 (Az + (1 = A)z’) > min[g(z), g(")]
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— A function g : X — R with a convex set X C R" is strictly quasi-
convex if, for all z,2’ € X (x # 2’) and all A € (0,1)

g Az + (1= N)2') <max[g(z), g(z")]

e Useful properties
A concave function is quasiconcave.

A convex function is quasiconvex.

e Consider a twice differentiable function ¢ : X — R with a convex set
X CR"For k=1,...n,

0 g1 9 -
g1 g11 912 --- Gk
Br.=192 921 922 ... g%
L9k 9k Gk2 - SRk
o If |[B1| <0,|By] <0,...,|By| <0, then f is strictly quasiconvex

o If |B1| <0,|By] >0,...,(—1)"|B,| >0, then f is strictly quasiconcave
e If f is quasiconvex, then |B;| < 0,|Bs| <0,...,|B,| <0

e If f is quasiconcave, then |Bi| <0,|Bs| >0,...,(=1)"|B,| >0

Optimization with Non-negativity Restrictions

e Consider a function f: X — R with X C R.

e Maximization problem with non-negativity restriction

max f(z) subject to x > 0. (15)
e If a solution x* for problem (15) exists, then
i) f(z*) <0, (i) 2* >0, (i) 2" x f'(z*) = 0.

The last condition means that at least one of x* and f’(x*) must be zero
(complementary slackness between x and f’(x)).
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e In general, maximization problem with non-negativity restrictions for a
multi-variable function f: X — R with X C R"”

max f(x) subject to x; > 0 forall i = 1,... n, (16)

where x = [21,...,x,]. First order conditions are

(i) fi(z*) <0, (ii) 27 >0, (i) 2] X fi(z") =0 foralli=1,...,n
foralli=1,...,n

Optimization with Inequality Constraints and Non-negativity Re-
strictions

e Consider an example with two inequality constraints and three choice
variables (i.e., x = [x1, T2, x3])

o
g'
max f(x) subject to g ( ) 2 (17)
’ >0,z

e Set up the Lagrangian function for problem (17) as
L= f(z)+ Mlc" = g'(@)] + Ae[c” — g ()] (18)
e Problem (17) can be transformed to

g'(z) +st =
max f(x) subject to g*(z) + % = 2 (19)
’ .%'120,.%’220,1’320,5120,5220

e Set up the Lagrangian function for problem (18) as
L= f(z)+Mlc' —s' = g'(@)] + Xo[c? — 5* — ¢* ()] (20)

e First order conditions for a solution for (20) is

OL OL

. < 0, z;>0, =z X . =0 foralli=1,2,3 (21)

oL . OL

8_3_1' < 0, s > 0, Sj X % =0 for all ] = 1,2 (22)
I o

oL = -5 —¢g(2")=0 forall j=1,2 (23)

OA;
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e From (22) and (23), we have

8L * *

s = d—ga) =0
Hence the first order conditions, (21) to (23), can be rewritten as
OL OL
<0 > :
gz, =¥ x; >0, z; X oz,
N>0,¢ =g (a") 20, Xy x [ —¢/(z)] =0forall j =1,2 (25)

=0 foralli=1,2,3 (24)

e (24) and (25) can be equivalently expressed as the following first-order
conditions for the Lagrangian function in (18)

oL < 0, z;>0, =z X oL =0 foralli=1,2,3
oL . . OL .
3_)\j > 0, A =0, )\jxa—)\j:() for all j =1,2

e Generally, consider the following maximization problem

gx)y<dforall j=1,....m

max f(x) subject to = T o alli = 1, .n

The Lagrangian function for problem (26) is

and the Kuhn-Tucker Conditions are

L L

0 < 0, x; >0, xfxa =0 foralli=1,...,n
oL . . OL :
a—>\j Z O, )\JZO, )\Jxa—A]:O fOI'aH]:]_,...7m

e Arrow-Enthoven Sufficiency Theorem: Quasiconcave Program-
ming

If the following conditions are satisfied:
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(a) o satisfies the Kuhn-Tucker conditions
(b) each ¢/ is differentiable and quasiconvex in R’
(

c) f is differentiable and it is [concave] or [quasiconcave in R’} and the
n derivatives f;(z*) are not all zero and f is twice differentiable in the
neighborhood of z*| or [quasiconcave in R’ and f;j(z*) < 0 for at least
one z;| or [quasiconcave in R’} and f;(«*) > 0 for some z; that can take
on a positive value without violating the constraints],

then z* is a solution to the maximization problem.
Generally, consider the following maximization problem

g(x) > forall j=1,...,m

xi>0foralli=1,...,n (27)

min f(x)subject to
T

The Lagrangian function for problem (26) is

m

L=f(z)+Y N — g ()]

J=1

and the Kuhn-Tucker Conditions are

L L

0 > 0, x>0, x;‘xa =0 foralli=1,...,n
oL . . OL .

8_>\j < O, )\]20, )\Jxa—A]:O fOI'aszl,...,m

Arrow-Enthoven Sufficiency Theorem: Quasiconvex Program-
ming

If the following conditions are satisfied:

(a) z* satisfies the Kuhn-Tucker conditions

(b) each ¢’ is differentiable and quasiconcave in R”

(c) f is differentiable and it is [convex] or [quasiconvex in R’} and the
n derivatives f;(x*) are not all zero and f is twice differentiable in the
neighborhood of z*] or [quasiconvex in R} and f;j(z*) > 0 for at least
one ;] or [quasiconvex in R" and f;(z*) < 0 for some z; that can take
on a positive value without violating the constraints],

then x* is a solution to the minimization problem.
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Optimization with Inequality Constraints and Non-negativity Con-
straints: Examples

e Example 1: A decision maker wants to find out (z1,x2) that maximizes
r1 + :13;/2 subject to (i) x1 + bxe < 1, (ii) x; > 0, (iii) x2 > 0. Assume
that b > 0.

The Lagrangean function is
L=x+ SU;/Q + )\[1 — T — bﬂ?g]

Kuhn-Tucker conditions are

L1 = 1—)\§O, ZElzo, Lllj:()
1 _
L2 = 51’2 1/2 — b S 0, i) Z 0, LQI‘Q =0

L)\: 1—331—[)1‘220, )\20, L)\)\ZO

Derive the solution to the problem.

Case 1) x1 = 0 and 9 = 0. Then Ly = 1 > 0 and Ly = —Ab < 0.
Therefore, A > 1/b. So, this violates the condition LyA = 0. This means
that 1 = 0 and x9 = 0 is not part of a solution.

Case 2) x; > 0 and x9 = 0. Then, L; = 1 — A = 0. Therefore, A = 1.
Note that as x9 — 0, Ly — 0o. Therefore, this is not part of a solution.
Case 3) xr1 = 0 and x3 > 0. Then, L1 = 1—X <0.So, A > 1. Then, L) =
1—bry=0.29=1/b>0. Then, Ly = 362 —Xb=0. A = 36712 > 1.
So, 0 < b<1/4.

Case 4) 1 > 0 and x5 > 0. Then, A =1 from L; =1 — X = 0. We have
T = 1/4b% from Lo = %x;1/2 —Ab=0. 2 = (4b—1)/4b > 0. Therefore,
b>1/4.

From all the possible cases, we have

(2725 = { (0,;) f0<b<1/4
1, L2) = ab—1 1 :

(L ) ifb>1/4
Note that the objective function is a concave function and the function
appeared in the constraint is a convex function. Furthermore, at least
one of the first-order derivatives of the objective function evaluated at
(x7, %) is not zero. Therefore, (x7], x3) is the solution to the problem.
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e Example 2: War time rationing.

A consumer’s utility function is Ulx1, 23] = 123 in a two-good economy
with p1 = 1, po» = 1 and I = 100. Rationing constraint is 2z; + x5 < 120.
The consumer’s maximization problem is

Tr1 + o S 100
max U[xy, x9] subject to 2x1 + x5 < 120
x1 2> 0,20 >0

The Lagrangian function is then

L = 2125 4+ M\ [100 — 21 — 29] + Ap[120 — 231 — 9]

The Kuhn-Tucker conditions are
lex%—/\l—Q)\QSO, x120, .’,U1><L1:0
L2:2$1$2—>\1—>\2§0, 1’220, Q?QXLQ:O
100—581—$220, )\120, )\1><L)\1=0
120—2[61—.%220, /\220, )\QXL)\2:0
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