Math camp: micro Practice questions

1. Consider a simple national-income model

$$
\begin{aligned}
Y & =C+I_{0}+G_{0} \\
C & =\alpha+\beta Y
\end{aligned}
$$

where $\alpha>0$ and $0<\beta<1$. Solve the system of equations by Cramer's rule. Derive the following matrix

$$
J=\left[\begin{array}{cc}
\frac{\partial Y^{*}}{\partial \alpha} & \frac{\partial Y^{*}}{\partial \beta^{*}} \\
\frac{\partial C^{*}}{\partial \alpha} & \frac{\partial C^{*}}{\partial \beta}
\end{array}\right]
$$

2. A firm has a production function $Q=f(K, L)$, where Q is the quantity of output, K is the amount of physical capital, L is the amount of labour. Suppose that this production function is an implicit function of $F(Q, K, L)=0$. Derive the marginal rate of technical substitution from $F(Q, K, L)=0$, that is,

$$
\left.\frac{d K}{d L}\right|_{d Q=0}
$$

3. The equilibrium value of the variable x is the solution of the equation

$$
f(x, a, b)+g(x, k(a))=0
$$

where a and b are exogenously given and f, g, and k are differentiable functions. How is the equilibrium value of x affected by a change in a (holding b constant)?
4. Consider a very simple national-income model (IS-LM) without taxation. The equilibrium in the goods market is described by the equation:

$$
\begin{equation*}
Y=C(Y)+I(r) \tag{1}
\end{equation*}
$$

where $C(Y)$ specifies the aggregate consumption as a function of the national income Y, and $I(r)$ specifies the aggregate investment as a
function of the interest rate r. The equilibrium in the money market can be described as the following equation

$$
\begin{equation*}
M_{0}^{s}=L(Y, r) \tag{2}
\end{equation*}
$$

where M_{0}^{s} is the exogenously given money supply and $L(Y, r)$ specifies the money demand as a function of the national income and the interest rate. Let $Y^{*}\left(M_{0}^{s}\right)$ and $r^{*}\left(M_{0}^{s}\right)$ denote the equilibrium national income and the equilibrium interest rate respectively. Assume that all functions are differentiable. Derive $d Y^{*}\left(M_{0}^{s}\right) / d M_{0}^{s}$ and $d r^{*}\left(M_{0}^{s}\right) / d M_{0}^{s}$, assuming that they exist.
5. Consider the following two sets:

$$
\begin{aligned}
& A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \leq 2 \text { and } x_{2} \leq 4\right\} \\
& B=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0 \text { and } x_{2} \geq 2\right\}
\end{aligned}
$$

Determine whether each of A, B, and $A \cap B$ is bound, closed, and compact.
6. Consider a twice-differentiable function $f: X \rightarrow \mathbb{R}$ with $X \subset \mathbb{R}^{3}$. Suppose that the Hessian matrices evaluated at two different x and x^{\prime} are given by

$$
H(x)=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 2 & -1 \\
2 & -1 & 0
\end{array}\right] \text { and } H\left(x^{\prime}\right)=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Determine whether each of the two Hessians is PD, ND, PSD, NSD or indefinite.
7. Consider the function $f: X \rightarrow \mathbb{R}$ with $X=\mathbb{R}^{2}$ such that for any $\left(x_{1}, x_{2}\right) \in X$,

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}+2 x_{1}+x_{2}
$$

Find all the local maximizers.
8. Consider a function $f: X \rightarrow \mathbb{R}$ with $X=\mathbb{R}^{3}$. The function f satisfies $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+2 x_{1}-x_{3}$ for all $\left(x_{1}, x_{2}, x_{3}\right) \in X$.
(a) Does a global minimum of f exist? If it does, derive it. If it does not exist, explain why it does not exist.
(b) Does a global maximum of f exist? If it does, derive it. If it does not exist, explain why it does not exist.
9. Suppose that $f(x)$ is a concave function and $h(x)$ is a convex function. Is $g(x)=f(x)-h(x)$ is a convex function or a concave function? Prove your answer precisely.
10. Consider a firm that produces two goods, good 1 and good 2 in a competitive market. The price of good i per unit is denoted by p_{i} for $i=$ 1,2 . The firm takes the prices as given. The cost of producing x_{1} units of good 1 and x_{2} units of good 2 is given by $C\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}$. Find out the stationary point of the firm's profit function. Show that it maximizes the firm's profit.
11. Consider a monopolist who can sell his product in the two different markets. The inverse demand functions in the two markets are given by

$$
\begin{aligned}
& p_{1}=100-q_{1} \\
& p_{2}=120-2 q_{2}
\end{aligned}
$$

where p_{i} is the price of the product per unit and q_{i} is the quantity of the product demanded in market $i(i=1,2)$. The total cost of producing $q_{1}+q_{2}$ units of the product is

$$
c=20\left(q_{1}+q_{2}\right)
$$

Write down the monopolist's profit when he sells q_{1} units of the product in market 1 and q_{2} units of the product in market 2 . Solve the profit maximization problem and derive the profit-maximizing quantities, one for each market. Derive the prices of the good, one for each market, at the solution.
12. Consider a problem for local maximizer/minimizers. The obejctive function is $x^{2}+y^{2}$ and the equality constraint is $4 x^{2}+2 y^{2}=4$. Find the four points that satisfies the first-order conditions for the Lagrangian function. Find local maximizers and local minimizers among them.
13. Consider the problem

$$
\max _{x, y} x^{a} y^{b} \text { subject to } p x+y=m
$$

where $a>0, b>0, p>0$, and $m>0$, and the objective function $x^{a} y^{b}$ is defined on the set of all points (x, y) with $x \geq 0$ and $y \geq 0$. Find a solution if it exists.
14. The objective function is $f(x, y)=x-y^{2}$. The problem is to find (x, y) that maximizes $f(x, y)$ subject to (i) $x-y \leq 0$, (ii) $x \geq 0$ and (iii) $y \geq 0$. Set up the Lagrangean function. Find the solution to the problem if it exists.
15. Consider a maximization problem with inequality constraints. The objective function is given by $f\left(x_{1}, x_{2}\right)=x_{1}+x_{1} x_{2}$. The problem is to find $\left(x_{1}^{*}, x_{2}^{*}\right)$ that maximizes $f\left(x_{1}, x_{2}\right)$ subject to (i) $x_{1}+a x_{2} \leq b$, (ii) $x_{1} \geq 0$ and (iii) $x_{2} \geq 0$. Assume that $a>0$ and $b>0$.
16. Prove that if function $g(x)$ is a concave function, then it is a quasiconcave function.
17. Consider the sequence of real numbers $\left\{x_{k}\right\}$ defined by

$$
x_{1}=\sqrt{2}, \quad x_{k+1}=\sqrt{x_{k}+2}, k=1,2, \ldots
$$

Use Theorem 2.0.2 to prove that the sequence is convergent and find its limit. (Hint: Prove by induction that $x_{k}<2$ for all k. Then prove that the sequence is (strictly) increasing).
18. Determine the \varlimsup lim $\underline{l i m}$ of the following sequences of real numbers
(a) $\left\{x_{k}\right\}=\left\{(-1)^{k}\right\}$
(b) $\left\{x_{k}\right\}=\left\{(-1)^{k}\left(2+\frac{1}{k}\right)+1\right\}$
19. Prove that the sequence of real numbers $\left\{x_{k}\right\}$ with the general terms $x_{k}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}$ is a Cauchy sequence.
20. Find all possible limits of subsequences of the sequence,

$$
\left\{x_{k}\right\}=\left\{1-\frac{1}{k}+(-1)^{k}\right\}
$$

21. Show that if $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are points in \mathbb{R}^{n}, then $d(x, y) \leq \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$.
22. Show by an example that the union of infinitely many closed sets need not be closed. (Hint: Look at $\cup_{i=1}^{\infty} A_{i}$, where $A_{i}=\{1 / i\}$ for $i=1,2, \ldots$)
23. Examine the convergence of the following sequence
(a) $x_{k}=\left(\frac{1}{k}, 1+\frac{1}{k}\right)$
(b) $x_{k}=\left(1+\frac{1}{k},\left(1+\frac{1}{k}\right)^{k}\right)$
(c) $x_{k}=\left(\frac{k+2}{3 k}, \frac{(-1)^{k}}{2 k}\right)$
24. Give examples of subsets S of \mathbb{R} and continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(a) S is closed, but $f(S)$ is not closed
(b) S is open but $f(S)$ is not open
(c) S is bounded, but $f(S)$ is not bounded.
25. Consider the function f defined for all x in $[0,1]$ by $f(x)=\frac{1}{2}(x+1)$. Prove that f maps $[0,1]$ into itself and find a fixed point. Suppose that f is defined for all x in $(0,1)$. Prove that f maps $(0,1)$ into itself but f has no fixed point. Why does not Brouwer's fixed point theorem apply?
