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Chapter 1

Some Basics

1.1 Elements of Logic

Necessity and sufficiency are fundamental logical notations. Consider any
two statements, A and B.When we say, “A is necessary for B,” we mean
that A must hold or be true for B to hold or be true. For B to be true
requires A to be true, so whenever B is true, we know that A must also
be true. So we might have said, instead, that “A is true if B is true,” or
simply that “A is implied by B” (B ⇒ A)

Suppose we know that “B ⇒ A” is a true statement. What if A is not
true? Because A is necessary for B, when A is not true, then B cannot
be true either. So, not-B is implied by not-A (˜A ⇒ ˜B). This form of
the original statement is called the contrapositive form. Contraposition of
the arguments in the statement reverses the direction of implication for the
true statement.

The notion of necessity is distinct from that of sufficiency. When we
say, “A is sufficient for B,” we mean that whenever A holds, B must hold.
We can say, “A is true only if B is true,” or that ”A implies B” (A⇒ B).
Once again, whenever the statement A ⇒ B is true, the contrapositive
statement, ˜B ⇒ ˜A is also true.

Two implications, A⇒ B and A⇐ B, can both be true. When this is
so, we say that “A is necessary and sufficient for B” or that ”A is true if and
only if B is true, or ”A is iff B.” When A is necessary and sufficient for B,
we say that the statements A and B are equivalent and write “A⇐⇒ B.”

1
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1.2 Theorems and Proofs

Important ideas in the economics literature are often stated in the form
of mathematical theorems. Mathematical theorems usually have the form
of an implication or an equivalence, where one or more statements are
alleged to be related in particular ways. Suppose that we have the theorem
“A⇒ B.” Here, A is called the premise and B the conclusion. To prove a
theorem is to establish the validity of its conclusion given the truth of its
premise and several methods can be used to do that.

1. Constructive proof (direct proof): We assume that A is true, deduce
various consequences of that and use them to show that B must also
hold.

2. Contrapositive proof: We assume that B does not hold, then show
that A cannot hold. This approach takes advantage of the logical
equivalence between the claims, A⇒ B and ˜B ⇒ ˜A, noted earlier,
and essentially involves a constructive proof of the contrapositive to
the original statement.

3. Proof by contradiction: The strategy is to assume that A is true, as-
sume that B is not true, and attempt to derive a logical contradiction.
This approach relies on the fact that if A⇒ ˜B is false, then A⇒ B
must be true. Sometimes, proofs by contradiction can get the job very
efficiently yet because they involve no constructive chain of reasoning
between A and B as the other two do, they seldom illuminate the
relationship between the premise and the conclusion.

If we assert that A is necessary and sufficient for B, or that A⇐⇒ B, we
must give a proof in both directions. That is, both A⇒ B and B ⇒ A must
be established before a complete proof of the assertion has been achieved.
Finally, citing a hundred examples can never prove a certain property always
holds, citing one solitary counterexample can disprove that the property
always holds.

1.3 Sets

A set is a collection of objects. These objects are called the elements of
the set. We use the notation x ∈ S to indicate that x is an element of S
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(or belongs to S or is a member of S). If A and B are two sets such that
every element of A is also an element of B, then A is a subset of B and
one writes A ⊆ B (read as ”A is a subset of B” or ”A is included in B” or
”B includes A”) The set A is a proper subset of B if A ⊆ B and A 6= B;
sometimes one writes A ( B in this case. The symbol ⊆ is called the
inclusion symbol. Some authors use ⊂ as the inclusion symbol and some
use ⊆ for the inclusion and reserve ⊂ for the proper inclusion. It is clear
that A = B if and only if A ⊆ B and B ⊆ A. It is also easy to see that
if A ⊆ B and B ⊆ C, then A ⊆ C. The empty set, ∅, is a set with no
elements at all and it is a subset of every set. The collection of all subsets
of a set A is also a set, called the power set of A and denoted by P(A).
Thus, B ∈ P(A)⇐⇒ B ⊆ A.

The order of the elements in a set specification such as {a, b, · · · , t} does
not matter. Thus, in particular {a, b} = {b, a}. However, on many occasions
one is interested in distinguishing between the first and the second elements
of a pair. One such example is the coordinates of a point in the xy-plane.
These coordinates are given as an ordered pair (a, b) of real numbers. The
important property of ordered pairs is that (a, b) = (c, d) if and only if a = c
and b = d. Once ordered pairs are available, ordered triples quadruples, etc.
are defined by (a, b, c) = ((a, b), c), (a, b, c, d) = ((a, b, c), d), etc. Of course,
there is a natural one-to-one correspondence ((a, b), c) ↔ (a, (b, c)). The
important thing again is that (a, b, c) = (d, e, f) if and only if a = d, b = e,
and c = f.

If A and B are sets, their Cartesian product is the set A×B consisting of
all ordered pairs (a, b) such that a ∈ A and b ∈ B. Similarly, the Cartesian
product of the sets A,B, and C is the set of all ordered triples (a, b, c) such
that a ∈ A, b ∈ B, and c ∈ C. The natural one-to-one correspondence
((a, b), c) ↔ (a, (b, c)) referred to above gives a one-to-one correspondence
between (A×B)×C ↔ A× (B ×C), os one can well identify the two and
write either product simply as A× B × C. The Euclidean plane R2 is the
Cartesian product R × R. More generally, Rm = R × · · · × R (m factors)
and there is a natural identification between Rm × Rn and Rm+n

There is often a need to go beyond ordered pairs. Suppose that for each
i in some set I, we specify an object ai (which can be a number, a set, or any
other entity). Then these objects form an indexed set {ai}i∈I with I as its
index set. In formal terms, an indexed set is a function whose domain is the
index set. There is an important difference between the indexed set {ai}i∈I
and the set of all the values ai. For example, an n-vector x = (x1, · · · , xn)
is an indexed set with {1, 2, · · · , n} as its index set. Here the order of
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the elements does matter and multiple occurrences of the same value will
also matter. Thus, the 5-dimensional vector (3,−1, 3,−1,−2) is different
from the vector (3,−2,−1, 3,−1), whereas the sets {3,−1, 3,−1,−2} and
{3,−2,−1, 3,−1} are equal. Indexed sets make it possible to talk about sets
whose elements appear in some specific order and with possible repetitions.
A sequence is an indexed set {ak}k∈N with the set N of natural numbers as
its index set. One often writes {ak}∞k=1.

1.4 Relations

Any ordered pair (s, t) associates an element s ∈ S to an element t ∈ T. The
sets S and T need not contain numbers; they can contain anything. Any
collection of ordered pairs is said to constitute a binary relation between
the sets S and T.

A binary relation is defined by specifying some meaningful relationship
that holds between the elements of the pair. For example, let S be the
set of cities {Washington, London, Paris, Ottawa} and T be the set of
countries {United States, England, Canada, Germany}. The state ”is the
capital of” then defines a relation between these two sets that contains the
three elements: {(Washington, United States), (London, England), (Ot-
tawa, Canada)}. As this example shows, a binary relation R on S × T is
always a subset of S × T. When s ∈ S bears the specified relationship to
t ∈ T, we denote membership in the relation R in one of two ways; Either
we writes (s, t) ∈ R or more commonly we simply write sRt. When a binary
relation is a subset of the product of one set S with itself, we say that it is
a relation on the set S.

Example 1.4.1 Let S be the closed unit interval S = [0, 1]. Illustrate bi-
nary relation ≥ on S.

We can build in more structure for a binary relation on some set by
requiring that it possesses certain properties.

Definition 1.4.1 A relation R on X is reflexive if xRx for all x in X.

Definition 1.4.2 A relation R on X is transitive if xRy and yRz implies
xRz for any three elements x, y, and z in X.

Definition 1.4.3 A relation R on X is complete if for all x and y in X,
at least one of xRy or yRx holds.
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Definition 1.4.4 A relation R on X is symmetric if xRy implies yRx.

Definition 1.4.5 A relation R on X is anti-symmetric if xRy and yRx
implies x = y.

A partial ordering on X is a relation on X that is reflexive, transitive,
and anti-symmetric. If a partial ordering is complete, it is called a linear
(or total) ordering.

Example 1.4.2 Show that the relation ≤ on R is a linear ordering.

1.5 Functions

A function is a very common though very special kind of relation. We say
that the function f is a mapping from X to Y and write f : X → Y.
Specifically, a function is a relation that associates each element of X with
a single, unique element of Y. Thus, f is single-valued and operates on every
x in X. One usually writes f(x) = y instead of xfy. For any x in X, f(x)
is called the image of x under f. The set X is the domain and Y is the
range of f. The image set of f includes images of all elements in X.1The
last formulation is an example of a somewhat sloppy notation that is often
used when the meaning is clear from the context. The graph of f is the set

graph(f) = {(x, y) ∈ X × Y : y = f(x)}

This is of course the same as the relation f defined in the previous subsec-
tion.

If f(x) = y, one also writes x 7→ y. The squaring function s : R → R,
for example, can then be written as s : x 7→ x2. Thus, 7→ indicates the
effect of the function on an element of the domain. If f : X → Y is a
function and S ⊂ X, the restriction of f to S is the function f |S defined
by f |S(x) = f(x) for every x ∈ S. A function is said to be injective or
one-to-one if f(x) 6= f(x′) whenever x 6= x′ . If the image set is equal to the
range - if for every y ∈ Y , there is x ∈ X such that f(x) = y, the function
is said to be surjective or onto. If a function is one-to-one and onto, then
an inverse function f−1 : Y → X exists that is also one-to-one and onto.
The composition of a function f : A→ B and a function g : B → C is the
function g ◦ f : A→ C given by (g ◦ f)(a) = g(f(a)) for all a ∈ A.

1Analysts are apt to use the word ”range” to denote what we have called the image
set of f. In this case, Y is called the codomain of f.
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1.5.1 Least Upper Bound Principle

A set X of real numbers is bounded above if there exists a real number b
such that b ≥ x for all x in X. This number b is called an upper bound
for S. A set that is bounded above has many upper bounds. A least upper
bound for the set X is a number b∗ that is an upper bound for S and is
such that b∗ ≤ b for every upper bound b. The existence of a least upper
bound is a basic and non-trivial property of the real number system.

Least Upper Bound Principle Any non-empty set of real numbers that
is bounded above has a least upper bound.

A set S can have at most one least upper bound, because if b∗1 and b∗2 are
both least upper bounds for X, then b∗1 ≤ b∗2 and b∗1 ≥ b∗2, and thus b∗1 = b∗2.
The least upper bound b∗ of X is often called the supremum of X. We write
b∗ = supX or a∗ = supx∈X x.

A set X is bounded below if there exists a real number a such that x ≥ a
for all x in X. The number a is called a lower bound for X. A set X that is
bounded below has a greatest lower bound a∗ with the property a∗ ≤ x for
all x in X and a∗ ≥ a for all lower bounds a. The number a∗ is called the
infimum of X and we write a∗ = inf X or b∗ = infx∈X x. Thus,

sup X = the least number greater than or equal to all numbers in X.
inf X = the greatest number less than or equal to all numbers in X.
If X is not bounded below, we write inf X = −∞. If X is not bounded

above, we write supX =∞.

Example 1.5.1 Consider the three sets. A = (−3, 7], B = {1/n : n =
1, 2, 3, · · · }, C = {x : x > 0 and x2 > 3}.

Example 1.5.2 Show that supX = ∞ if and only if every b in R there
exists an x in X such that x > b.

The following characterization of the supremum is easy to prove:

Theorem 1.5.1 Let X be a set of real numbers and b∗ a real number. Then
supX = b∗ if and only if (a) x ≤ b∗ for all x in X and (b) for each ε > 0
there exists an x in X such that x > b∗ − ε



Chapter 2

Sequence of Real Numbers

A sequence is a function k 7→ x(k) whose domain is the set {1, 2, 3, . . .}
of all positive numbers. The terms x(1), x(2), · · · of the sequences are
usually denoted by using subscripts: x1, x2, · · · . We shall us the notation
{xk}∞k=1, or simply {xk} to indicate an arbitrary sequence of real numbers.
A sequence {xk} of real numbers is said to be

1. increasing (or nondecreasing) if xk ≤ xk+1 for k = 1, 2, · · ·

2. strictly increasing if xk > xk+1 for k = 1, 2, · · ·

3. decreasing (or non-increasing) if xk ≥ xk+1 for k = 1, 2, · · ·

4. strictly decreasing if xk > xk+1 for k = 1, 2, · · ·

A sequence that is increasing or decreasing is called monotone.

Example 2.0.1 Decide whether or not the three sequences of real numbers
whose general terms are given below are monotone

(a) xk = 1− 1/k (b) yk = (−1)k (c) zk =
√
k + 1−

√
k

A sequence {xk} is said to converge to a number x if xk becomes arbi-
trary close to x for all sufficiently large k. We write limk→∞ = x or xk → x
as k →∞. The precise definition of convergence is as follows:

Definition 2.0.1 The sequence {xk} converges to x and we write

lim
k→∞

xk = x

if for every ε > 0 there exists a natural number N such that |xk − x| < ε
for all k > N. The number x is called the limit of the sequence {xk}. A
convergent sequence is one that converges to some number.

7
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Note that the limit of a convergent sequence is unique. A sequence that
does not converge to any real number is said to diverge. In some cases
we use the notation limk→∞ even if the sequence {xk} is divergent: If for
each number M there exists a number N such that xk ≥M for all natural
number k ≥ N, then we say that xk approaches∞ and write limk→∞ =∞.
In the same way we write limk→∞ = −∞ if for every number M there exists
a number N such that xk ≤ −M for all k ≥ N.

A sequence {xk} is bounded if there exists a number M such that |xk| ≤
M for all k = 1, 2, · · · . It is easy to see that every convergent sequence is
bounded: If xk → x, then by the definition of convergence, only finitely
many terms of the sequence can lie outside the interval I = (x− 1, x + 1).
The set I is bounded and the finite set of points from the sequence that
are not in I is bounded, so {xk} must be bounded. On the other hand,
is every bounded sequence convergent? No. For example, the sequence
{yk} = {(−1)k} in the Example above. Suppose, however, that the sequence
is monotone as well as bounded. Then it is convergent.

Theorem 2.0.1 Every bounded monotone sequence is convergent.

Proof. Suppose that {xk} is increasing and bounded. Let b∗ be the least
upper bound of the set X = {xk : k = 1, 2, . . .} and let ε be an arbitrary
positive number. Then b∗− ε is not an upper bound of X, so there must be
a term xN of the sequence for which xN > b∗ − ε. Because the sequence is
increasing, b∗ − ε < xN ≤ xk for all k > N. But the xk are all less than or
equal to b∗, so b∗− ε < xN ≤ b∗. Thus, for any ε > 0, there exists a number
N such that |xk− b∗| < ε for all k > N. Hence {xk} converges to b∗. If {xk}
is decreasing and bounded, the argument is analogous.

Example 2.0.2 Consider the sequence {xk} defined by

x1 =
√

2, xk+1 =
√
xk + 2, k = 1, 2, . . .

By using the Theorem above, prove that the sequence is convergent and find
its limit. (Hint: Prove by induction that xk < 2 for all k. Then, prove that
the sequence is (strictly) increasing)

The following rules are quite convenient in handling convergent se-
quences.

Theorem 2.0.2 Suppose that the sequences {xk} and {yk} converges to x
and y respectively. Then:
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1. limk→∞(xk + yk) = x+ y

2. limk→∞(xk − yk) = x− y

3. limk→∞(xk × yk) = x× y

4. limk→∞(xk/yk) = x/y, assuming that yk 6= 0 for all k and y 6= 0.

2.1 Subsequences

Let {xk} be a sequence. Consider a strictly increasing sequence of natural
numbers

k1 < k2 < k3 < · · ·

and form a new sequence {yj}∞j=1, where yj = xkj for j = 1, 2, . . . . The se-
quence {yj}j = {xkj}j is called a subsequence of {xk}. Because the sequence
{kj} is strictly increasing, kj ≥ j for all j. The terms of the subsequence
are all present in the original one. In fact, a subsequence can be viewed
as the result of removing some (possibly none) of the terms of the original
sequence.

Note 1 Some proofs involves pairs of sequences {xk}∞k=1 and {xkj}∞j=1

where kj ≥ j for all j but where the sequence k1, k2, . . . is not nec-
essarily strictly increasing. Thus {xkj} is not quite a subsequence of
{xk}. However, it is always possible to select terms from {xkj} in such
a way that we get a subsequence {xki}i of {xk}k: Let k1 = k1 and
generally ki+1 = kki+1. Then ki+1 ≥ ki + 1 > ki.

Theorem 2.1.1 Every subsequence of a convergent sequence is itself con-
vergent and has the same limit as the original sequence.

Theorem 2.1.2 If the sequence {xk} is bounded, then it contains a con-
vergent subsequence.

Proof. Suppose that |xk| ≤ M for all k = 1, 2, . . .. Let yn = sup{xk :
k ≥ n} for n = 1, 2, . . .. Then {yn} is a decreasing sequence because the
set {xk : k ≥ n} shrinks as n increases. The sequence is also bounded
because |yn| ≤ M. According to the Theorem above, the sequence {yn}
has a limit x = limn→∞ yn ∈ [−M,M ]. By the definition of yn, we can
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choose a term xkn from the original sequence {xk} (with kn ≥ n) satisfying
|yn − xkn| < 1/n (see Theorem 5.1). Then,

|x− xkn| = |x− yn + yn − xkn| ≤ |x− yn|+ |yn − xkn| ≤ |x− yn|+ 1/n

This shows that xkn → x as n → ∞. By using the construction in Note 1,
we can extract, from {xk}, a subsequence of {xkn} that converges to x.

2.2 Cauchy Sequence

Definition 5.1 for a convergent sequence uses the value of the limit. If the
limit is unknown or inconvenient to calculate, the definition is not very
useful because one cannot test all numbers to see if they meet the criterion.
An important alternative necessary and sufficient condition for convergence
is based on the following concept

Definition 2.2.1 A sequence {xk} of real number is called a Cauchy se-
quence if for every ε > 0, there exists a natural number such that

|xn − xm| < ε for all n > N and all m > N

All the terms of a convergent sequence eventually cluster around the
limit, so the sequence is a Cauchy sequence. The converse is also true,
that is, every Cauchy sequence is convergent. Therefore, when the limit
of a sequence is not convenient to calculate, one can determine whether a
sequence is convergent by checking if it is a Cauchy sequence

Theorem 2.2.1 A sequence is convergent if and only if it is a Cauchy
sequence.

Proof. To prove the ”only if part”, suppose that {xk} converges to x.
Given ε > 0, choose a natural number N such that |xk − x| < ε/2 for all
k > N. Then, for k > N and m > N,

|xk − xm| = |xk − x+ x− xm| ≤ |xk − x|+ |x− xm| < ε/2 + ε/2 = ε

Therefore, {xk} is a Cauchy sequence.
To prove the ”if part”, suppose that {xk} is a Cauchy sequence. We

first show that the sequence is bounded. By the Cauchy property, there
is a number M such that |xk − xM | < 1 for k > M. This means that
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all points xk with k > M have a distance from xM that is less than 1.
Moreover, the finite set {x1, x2, . . . , xM−1} is surely bounded. Hence {xk}
is bounded. By Theorem 6.2, it has a convergent subsequence {xkj}. Let
x = limj xkj . Because {xk} is a Cauchy sequence, for every ε > 0 there is
a number N such that |xn − xm| < ε/2 for n > N and m > N. Moreover,
if J is sufficiently large, |xkj − x| < ε/2 for all j > J. Then for k > N and
j > max{N, J},

|xk − x| ≤ |xk − xkj |+ |xkj − x| < ε/2 + ε/2 = ε

Hence xk → x as k →∞.

Example 2.2.1 Prove that the sequence {xk} with the general term xk =
1
12

+ 1
22

+ 1
32

+ · · ·+ 1
k2

is a Cauchy sequence.

2.2.1 Upper and Lower Limits.

Let {xk} be a sequence that is bounded above, and define yn = sup{xk :
k ≥ n} for n = 1, 2, . . .. Each yn is a finite number and {yn}n is a decreasing
sequence. Then, either limn→∞ yn exists or is −∞. We call this limit the
upper limit (or lim sup) of the sequence {xk} and we introduce the following
notation:

lim
k→∞

supxk = lim
n→∞

(sup{xk : k ≥ n})

If {xk} is not bounded above, we write lim supk→∞ xk = ∞. Similarly, if
{xk} is bounded below, its lower limit (or lim inf), is defined as

lim
k→∞

inf xk = lim
n→∞

(inf{xk : k ≥ n})

If {xk} is not bounded below, we write lim inf xk = −∞. The symbols of
lim sup and lim inf are often written as lim and lim.

Example 2.2.2 Determine the lim and lim of the following sequences

(a) {xk} = {(−1)k} (b) {xk} =

{
(−1)k

(
2 +

1

k

)
+ 1

}
It is not difficult to see that limk→∞xk ≤ limk→∞xk for every sequence

{xk}. The following result is also rather easy.

Theorem 2.2.2 If the sequence {xk} is convergent, then

limk→∞xk = limk→∞xk = lim
k→∞

xk

On the other hand, if limk→∞xk = limk→∞xk, then {xk} is convergent.
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2.3 Infimum and Supremum of Functions

Suppose that f(x) is defined for all x in B, where B ⊆ Rn. We define the
infimum and supremum of the function f over B by

inf
x∈B

f(x) = inf{f(x) : x ∈ B} and sup
x∈B

f(x) = sup{f(x) : x ∈ B}

If a function defined over a set B, if infx∈B f(x) = y and if there exists a c
in B such that f(c) = y, then we say that the infimum is attained at the
point c in B. In this case, the infimum y is called the minimum of f over
B, and we often write min instead of inf . In the same way, we write max
instead of sup when the supremum of f over B is attained in B, so becomes
the maximum.



Chapter 3

Euclidean Space

Topology is the study of fundamental properties of sets and mappings. In
this chapter, we introduce a few basic topological ideas and use them to
establish some important results about sets, and about continuous functions
from one set to another. We begin by describing the notion of a metric and
a metric space in general. A metric on a set X is simply a measure of
distance and it is a function d : X × X → R satisfying the following four
properties:

1. Positivity: d(x, y) ≥ 0 and d(x, x) = 0 for all x, y ∈ X

2. Discrimination: d(x, y) = 0 implies that x = y.

3. Symmetry: d(x, y) = d(y, x) for all x, y ∈ X

4. The triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

If d is a metric on a set X, then (X, d) is called a metric space. Although
many of the ideas discussed here may be generalized to arbitrary types of
sets, we confine ourselves to considering sets in Rn, that is, X = Rn. The
Euclidean metric d : Rn × Rn → R is defined as, for any two vectors
x = (x1, · · · , xn) and y = (y1, · · · , yn) in Rn

d(x, y) ≡
√

(x1 − y1)2 + · · ·+ (xn − yn)2

(Rn, d) is called the Euclidean space, where d is the Euclidean metric. For
any two points x and y in Rn, d(x, y) measures the Euclidean distance
between x and y and it is called the norm of the vector difference between
x and y (d(x, y) = ||x− y||)

13
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Example 3.0.1 Show that if the points x and y in Rn satisfy d(x, y) < r,
then −r < xj − yj < r for all j = 1, 2, . . . , n.

3.1 Convex Sets

Convexity plays an important role in theoretical economics. Let x and y be
any two points in Rn. The closed line segment between x and y is the set

[x, y] = {z : ∃λ ∈ [0, 1] s.t. z = λx+ (1− λ)y}

whose members are the convex combinations z = λx + (1 − λ)y, with 0 ≤
λ ≤ 1, of the two points x and y. The definition of a convex set in Rn is
now easy to formulate.

Definition 3.1.1 A set S in Rn is called convex if [x, y] ⊆ S for all x, y in
S or equivalently, if

λx+ (1− λ)y ∈ S for all x, y in S and all λ in [0, 1]

Note in particular that the empty set and also any set consisting of
one single point are convex. Intuitively speaking, a convex set must be
connected without any holes and its boundary must not be bent inwards at
any point.

If S and T are two convex sets, then their intersection S ∩ T is also
convex. More generally, if S1, . . . , Sm are convex sets in Rn, then S1∩. . .∩Sm
is convex.

3.2 Open Sets and Closed Sets

In the Euclidean space, we can define the open ball around a with radius r
for any a in Rn and any r > 0. The open ball is denoted by

Br(a) = {x ∈ Rn : d(a, x) < r}

Let S be an arbitrary subset of Rn. A point a in S is called an interior
point of S if there is an open ball Br(a) centered at a which lies entirely
within S. Thus, an interior point of S is completely surrounded by other
points of S. The set of all interior points of S is called the interior of S,
and is denoted by int(S). A set S is called a neighborhood of a if a is an
interior point of S, that is, if S contains some open ball Br(a) around a.
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Definition 3.2.1 A set S in Rn is called open if all its members are interior
points.

Some important properties of open sets are summarized in the following
theorem.

Theorem 3.2.1 1. The whole space Rn and the empty set ∅ are both open.
2. Arbitrary unions of open sets are open.
3. The intersection of finitely many open sets is open.

Proof. 1. It is clear that B1(a) ⊆ Rn for all a in Rn, so Rn is open. The
empty set ∅ is open because the set has no element, so every member is an
interior point.

2. Let {Ui}i∈I be an arbitrary family of open sets in Rn and U∗ = ∪i∈IUi
be the union of the whole family. For each x in U∗, there is at least one i in
I such that x ∈ Ui. Since Ui is open, there exists an open ball Br(x) with
center x such that Br(x) ⊆ Ui ⊆ U∗. Hence, x is an interior point of U∗.
This shows that U∗ is open.

3. Let {Ui}mi=1 be a finite collection of open sets in Rn and U∗ = ∩mi=1Ui
be the intersection of all these sets. Let x be any point in U∗. Then for
each i = 1, · · · ,m, the point x belongs to Ui, and because Ui is open, there
exists an open ball Bi = Bri(x) with center x and radius ri > 0 such that
Bi ⊆ Ui. Let B∗ = Br(x) where r is the smallest of the numbers r1, . . . , rm.
Then x ∈ B∗ = ∩mi=1Bi ⊆ ∩mi=1Ui = U∗ and it follows that U∗ is open.

Note that the intersection of an infinite number of open sets need not
be open. For example, the intersection of the infinite family B1/k(0), k =
1, 2, · · · , of open balls center at the zero vector 0 is the one-element set {0}.
The set {0} is not open because Br(0) is not a subset of {0} for any positive
r.

Example 3.2.1 Show that A = {(x, y) : x > y} is an open set in R2.

The complement of a set S ⊆ Rn is the set Sc of all points in Rn that
do not belong to S. A point x in Rn is called a boundary point of the set S
if every ball centered at x contains at least one point in S and at least one
point in Sc. Note that a boundary point of S is also a boundary point of Sc,
and vice versa. Each point in a set is either an interior point or a boundary
point of the set. Note that given any set S ⊆ Rn, there is a corresponding
partition of Rn into three mutually disjoint sets (some of which may be
empty), namely:
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1. the interior of S, which consists of all point x in Rn such that N ⊆ S
for some neighborhood N of x.

2. the exterior of S, which consists of all points x in Rn for which there
exists some neighborhood N of x such that N ⊆ Sc.

3. the boundary of S, which consists of all points x in Rn with the
property that every neighborhood N of x intersects both S and its
complement Sc

The set of all boundary points of a set S is called the boundary of S and
is denoted by ∂S or bd(S). A set S in Rn is said to be closed if it contains
all its boundary points. The union S∪∂S is called the closure of S, denoted
by S or c`(S). A point a belongs to S if and only if every open ball Br(a)
around a intersects S. The closure S of any set S is indeed closed. In fact,
S is the smallest closed set containing S.

We noted above that S and Sc have the same boundary points. Fur-
thermore, a set is open if and only if every point in the set is an interior
point, that is, if and only if it contains none of its boundary points. On the
other hand, a set is closed if and only if it contains all its boundary points.
It is easily follows the following statement is true.

A set in Rn is closed if and only if its complement is open.

Here are most important properties of closed sets.

Theorem 3.2.2 1. The whole space Rn and the empty set are both closed.
2. Arbitrary intersections of closed sets are closed.
3. The union of finitely many closed sets is closed.

Example 3.2.2 Sketch the set S = {(x, y) ∈ R2 : x > 0, y ≥ 1/x} in the
plane. Is S closed?

Note that infinite unions of closed sets need not be closed. Also, one
should be careful to note that the technical meaning of the words open and
closed. In topology, any set containing some of its boundary points but
not all of them is neither open nor closed. For example, half-open intervals
[a, b) and (a, b] are neither open nor closed in R. By contrast, the empty
set,∅, and the whole space Rn are both open and closed. These are the only
two sets in Rn that are both open and closed.
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3.3 Topology and Convergence

We generalize the argument in Chapter 2 into Rn. A sequence {xk} (al-
ternatively, denoted by {xk}∞k=1 or {xk}k) in Rn is a function that for each
natural number k yields a corresponding point xk in Rn. The point xk os
called the kth term or kth element of the sequence.

Definition 3.3.1 A sequence {xk} in Rn converges to a point x if for each
ε > 0, there exists a natural number N such that xk ∈ Bε(x) for all k > N,
or equivalently, if d(xk, x)→ 0 as k →∞.

In other words, each open ball around x, however small its radius ε,
must contain xk for all sufficiently large k. Geometrically speaking, as k
increases, the points xk must eventually all become concentrated around x.
Note that xk need not approach x from any fixed direction and the distance
d(xk, x) need not decrease monotonically as k increases. If {xk} converges
to x, we write

xk → x as k →∞, or lim
k→∞

xk = x

and call x the limit of the sequence.

Theorem 3.3.1 Let {xk} be a sequence in Rn. Then {xk} converges to the
vector x in Rn if and only if for each j = 1, . . . , n, the real number sequence
{x(j)k }∞k=1 consisting of the jth component of each vector xk converges to
x(j), the jth component of x.

Proof. For every k and every j one has d(xk, x) = ||xk − x|| ≥ |x(j)k − x(j)|.
It follows that if xk → x, then x

(j)
k → x(j).

Suppose on the other hand that x
(j)
k → x(j) for j = 1, 2, . . . , n. Then,

given any ε > 0, for each j = 1, 2, . . . , n there exists a number Nj such that

|x(j)k − x(j)| < ε/
√
n for all k > Nj. It follows that

d(xk, x) =

√
|x(1)k − x(1)|2 + · · ·+ |x(n)k − x(n)|2

<
√
ε2/n+ · · ·+ ε2/n =

√
ε2 = ε

for all k > max{N1, . . . , Nn}. Therefore, xk → x as k →∞.

This characterization makes it easy to translate theorems about se-
quences of real numbers into theorems about sequences in Rn.
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Let {xk} be a sequence in Rn. Consider a strictly increasing sequence
k1 < k2 < k3 < · · · of natural numbers and let yj = xkj for j = 1, 2, . . . .
The sequence {yj}∞j=1 is called a subsequence of {xk} and is often denoted
by {xkj}∞j=1. All terms of the subsequence {xkj}j are present in the original
sequence {xk}k but some or even most terms of the original sequence may
be omitted as long as infinitely many remain.

Example 3.3.1 Examine the convergence of the following sequences in R2

1. xk = (1/k, 1 + 1/k)

2. xk = (1 + 1/k, (1 + 1/k)k)

3. xk = (k, 1 + 3/k)

4. xk = ((k + 2)/3k, (−1)k/2k)

3.3.1 Cauchy Sequences

Cauchy sequences of real numbers are studied in Chapter 2. There is a
natural generalization to Rn.

Definition 3.3.2 A sequence {xk} in Rn is called a Cauchy sequence if for
every ε > 0 there exists a number N such that d(xk, xm) < ε for all k > N
and all m > N.

The main results in Chapter 2 on Cauchy sequences in R carry over
without difficulty to sequences in Rn. In particular,

Theorem 3.3.2 A sequence {xk} in Rn is convergent if and only if it is a
Cauchy sequence.

Example 3.3.2 Prove Theorem 11.2.

Convergent sequences can be used to characterize very simply the closure
of any set in Rn.

Theorem 3.3.3 1. For any set S ⊆ Rn, a point a in Rn belongs to S if
and only if a is the limit of a sequence {xk} in S.

2. A set S ⊆ Rn is closed if and only if every convergent sequence of
points in S has its limit in S.
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Proof. 1. Let a ∈ S. For each natural number k, the open ball B1/k(a)
must intersect S, we can choose an xk in B1/k(a) ∩ S. Then xk → a as
k →∞. On the other hand, assume that a = limk→∞ xk for some sequence
{xk} in S. We claim that a ∈ S. For any r > 0, we know that xk ∈ Br(a) for
all large enough k. Since xk also belongs to S, it follows that Br(a)∩S 6= ∅.
Hence a ∈ S.

2. Assume that S is closed and let {xk} be a convergent sequence
such that xk ∈ S for all k. By part 1, x = limk→∞ xk belongs to S = S.
Conversely, suppose that every sequence of points from S has its limit in
S. Let a be a point in S. By part 1, a = limk→∞ xk for some sequence xk in
S and there fore a ∈ S, by hypothesis. This shows that S ⊆ S, hence S is
closed.

3.3.2 Boundedness in Rn

Definition 3.3.3 A set S in Rn is bounded if there exists a number M
such that ||x|| ≤ M for all x in S. In other words, no point of S is at a
distance greater than M from the origin. A set that is not bounded is called
unbounded.

Similarly, a sequence {xk} in Rn is bounded if the set {xk : k = 1, 2, . . .}
is bounded.

Theorem 3.3.4 Every convergent sequence in Rn is bounded.

Proof. If xk → x, then only finitely many terms of the sequence can lie
outside the ball B1(x). The ball B1(x) is bounded and any finite set of
points is bounded, so {xk} must be bounded.

Even though a bounded sequence in Rn is not necessarily convergent,
any bounded sequence in Rn has a convergent subsequence.

Theorem 3.3.5 Every bounded sequence in Rn has a convergent subse-
quence.

Finally, we can fully characterize a bounded subset S of Rn as follows.

Theorem 3.3.6 A subset S of Rn is bounded if and only if every sequence
of points in S has a convergent subsequence.
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3.3.3 Compactness

Definition 3.3.4 A subset S of Rn is compact if it is closed and bounded.

Compactness is a central concept in mathematical analysis. It also plays
an important role in mathematical economics, for example, in proving ex-
istence of solutions to maximization problems. Compact sets in Rn can be
given the following very useful characterization.

Theorem 3.3.7 A subset S of Rn is compact if and only if every sequence
of points in S has a subsequence that converges to a point in S.

Proof. Suppose that S is compact and let {xk} be a sequence in S. By
Theorem 11.6, {xk} contains a convergent subsequence. Since S is closed,
it follows from Theorem 11.3 that the limit of the subsequence must be in
S.

On the other hand, suppose that every sequence of points in S has a
subsequence converging to a point of S. We must prove that S is closed
and bounded. Boundedness follows from Theorem 11.6. To prove that S
is closed, let x be any point in its closure S. By Theorem 11.3, there is a
subsequence {xkj} that converges to a limit x′ in S. But {xkj} also converges
to x. Hence x = x′ ∈ S.

3.4 Continuous Functions

Consider first a real-valued function z = f(x) = f(x1, . . . , xn)of n variables.
Roughly speaking, f is continuous if small changes in the independent vari-
ables cause only small changes in the function value. The precise “ε − δ”
definition is as follows.

Definition 3.4.1 A function f with domain S ⊆ Rnis continuous at a
point a in S if for every ε > 0 there exists a δ > 0 such that

|f(x)− f(a)| < ε for all x in S with ||x− a|| < δ

If f is continuous at every point a in a set S, we say that f is continuous
on S.

Example 3.4.1 Let f(x) =
√
x be a function from R+ to R. Prove that f

is continuous.
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A function of n variables that can be constructed from continuous func-
tions by combining the operations of addition, subtraction, multiplication,
division, and composition of functions, is continuous wherever it is defined.
Now consider the general case of vector-valued functions.

Definition 3.4.2 A function f = (f1, . . . , fm) from a subset S of Rn to
Rm is said to be continuous at x◦ in S if for every ε > 0 there exists a δ > 0
such that d(f(x), f(x◦)) < ε for all x in S with d(x, x◦) < δ, or equivalently,
such that f(Bδ(x

◦) ∩ S) ⊆ Bε(f(x◦)).

Intuitively, continuity of f at x◦ means that f(x) is close to f(x◦) when
x is close to x◦. Frequently, the easiest way to show that a vector function
is continuous, is to show that each component is continuous.

Theorem 3.4.1 A function f = (f1, . . . , fm) from S ⊆ Rn to Rm is con-
tinuous at a point x◦ in S if and only if each component fj : S → R,
j = 1, . . . ,m, is continuous at x◦.

Proof. Suppose that f is continuous at x◦. Then, for every ε > 0 there
exists a δ > 0 such that

|fj(x)− fj(x◦)| ≤ d(f(x), f(x◦)) < ε

for every x in S with d(x, x◦) < δ. Hence fj is continuous at x◦ for j =
1, . . . ,m.

Suppose on the other hand that each component fj is continuous at x◦.
Then, for every ε > 0 and every j = 1, . . . ,m, there exists a δj > 0 such
that |fj(x)− f(x◦)| < ε/

√
m for every point x in S with d(x, x◦) < δj. Let

δ = min{δ1, · · · δm}. Then, x ∈ Bδ(x
◦) ∩ S implies that

d(f(x), f(x◦)) =
√
|f1(x)− f1(x◦)|2 + · · ·+ |fm(x)− fm(x◦)|2

<
√
ε2/m+ · · · ε2/m = ε

This proves that f is continuous at x◦.
Continuity of a function can be characterized by means of convergent

sequences. In theoretical arguments, this is often the easiest way to check
if a function is continuous.

Theorem 3.4.2 A function f from S ⊆ Rn to Rm is continuous at a point
x◦ in S if and only if f(xk) → f(x◦) for every sequence {xk} of points in
S that converges to x◦.
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Proof. Suppose that f is continuous at x◦, and let {xk} be a sequence
in S that converges to x◦. Let ε > 0 be given. Then there exists a δ > 0
such that d(f(x), f(x◦)) < ε whenever x ∈ Bδ(x

◦) ∩ S. Because xk → x◦,
there exists a number N such that d(xk, x

◦) < δ for all k > N. But then
xk ∈ Bδ(x

◦) ∩ S and so d(f(xk), f(x◦)) < ε for all k > N , which implies
that {f(xk)} converges to f(x◦).

On the other hand, let {xk} be a sequence such that xk ∈ S for each k
and it converges to x◦. Since the sequence converges to x◦, for any δ > 0
there exists a number Nδ such that d(xk, x

◦) < δ for all k > Nδ. Similarly,
since f(xk) → f(x◦), for any ε > 0 there exists a number Nε such that
d(f(xk), f(x◦)) < ε for all k > Nε. Define N∗ = max{Nδ, Nε}. Then, by
choosing k > N∗ for any ε > 0 there exists a δ > 0 with d(xk, x

◦) < δ such
that d(f(xk), f(x◦)) < ε. This proves that f is continuous at x◦.

The following property of continuous functions is often useful.

Theorem 3.4.3 Let S ⊆ Rn and let f : S → Rm be continuous. Then,
f(K) = {f(x) : x ∈ K} is compact for every compact subset K of S.

Proof. Let {yk} be any sequence in f(K). By definition, for each k there
is a point xk in K such that yk = f(xk). Because K is compact, the se-
quence {xk} has a subsequence {xkj} converging to a point x0 in K by
Theorem 11.7. Because f is continuous, f(xkj) → f(x0) as j → ∞, where
f(x0) ∈ f(K) because x0 ∈ K. But then {ykj} is a subsequence of {yk} that
converges to a point f(x0) in f(K). So, we have proved that any sequence in
f(K) has a subsequence converging to a point of f(K). By Theorem 11.7,
it follows that f(K) is compact.

Suppose that f is a continuous function from Rn to Rm. If V is an open
set in Rn, the image f(V ) = {f(x) : x ∈ V } of V need not be open in Rm.
Nor need f(C) be closed if C is closed. Nevertheless, the inverse image (or
preimage) f−1(U) = {x : f(x) ∈ U} of an open set U under a continuous
function f is always open. Similarly, the inverse image of any closed set
must be closed.

Theorem 3.4.4 Let f be any function from Rn to Rm. Then, f is contin-
uous if and only if either of the following equivalent conditions is satisfied:

1. f−1(U) is open for each open set U in Rm

2. f−1(F ) is closed for each closed set F in Rm
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Example 3.4.2 Give examples of subsets S of R and continuous functions
f : R→ R such that

1. S is closed but f(S) is not closed

2. S is open but f(S) is not open

3. S is bounded but f(S) is not bounded

3.5 Some Existence Theorems

We consider some very powerful topological results, each with important
application in microeconomic theory. All are in a class of theorems known
as “existence theorems.” An existence theorem specifies conditions that, if
met, guarantee that something exists.

Before presenting the first existence theorem known as Weierstrass Ex-
istence Theorem, we present the following theorem, which will be used in
proving Weierstrass Existence Theorem.

Theorem 3.5.1 Let S be a compact set in R and let x∗ be the greatest
lower bound of S and x∗ be the lowest upper bound of S. Then both x∗ and
x∗ are in S.

Proof. Let S ⊂ R be closed and bounded and let x∗ be the lowest upper
bound of S. Then, by definition of any upper bound, we have x∗ ≥ x for all
x ∈ S. If x∗ = x for some x ∈ S, we are done. Suppose that x∗ is strictly
greater than every point in S. If x∗ > x for all x ∈ S, then x∗ /∈ S, so
x∗ ∈ R\S. Since S is closed, R\S is open. Then, by the definition of open
sets, there exists some ε > 0 such that Bε(x

∗) = (x∗ − ε, x∗ + ε) ⊂ R\S.
Since x∗ > x for all x ∈ S and Bε(x

∗) ⊂ R\S, there exists x̃ ∈ Bε(x
∗) such

that x̃ > x for all x ∈ S. In particular, we have x∗ − ε/2 ∈ Bε(x
∗) and

x∗− ε/2 > x for all x ∈ S. But, this contradicts that x∗ is the lowest upper
bound of S. Therefore, we must conclude that x∗ ∈ S. The same argument
can be constructed for the greatest lower bound of S.

Weierstrass Existence Theorem that we consider is a fundamental result
in optimization theory. Many problems in economics involves maximizing
or minimizing a function defined over some subset of Rn. We will pay
particular attention to problems of maximizing or minimizing functions
that map vectors in Rn to numbers of R. The theorem specifies sufficient
conditions under which the existence of a maximum and minimum of a
function is assured.
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Theorem 3.5.2 (Weierstrass Existence of Extreme Values) Let f : S → R
be a continuous function where S is a non-empty compact subset of Rn.
Then, there exists a vector x and a vector x in S such that

f(x) ≤ f(x) ≤ f(x) for all x ∈ S

Proof. Since f is continuous and S is compact we know by Theorem 12.3
that f(S) is a compact set. Because f is real-valued, f(S) ⊂ R. Since f(S)
is compact, it is closed and bounded. By Theorem 13.1, any closed and
bounded subset of real numbers contains its greatest lower bound, call it
a, and its lowest upper bound, call it b. By the definition of the image set,
there exist some x ∈ S such that f(x) = b ∈ f(S) and some x ∈ S such
that f(x) = a ∈ f(S). Together with the definitions of the greatest lower
bound and the lowest upper bound, we have f(x) ≤ f(x) and f(x) ≤ f(x)
for all x ∈ S.

Next, let us turn our attention to one more special class of functions.
We restrict our attention to functions that map from one subset of Rn back
to the same subset of Rn. If S ⊆ Rn and f : S → S, then f maps vectors
in S back to other vectors in the same set S. For example, a system of
simultaneous equations given by

y1 = f1(x1, . . . , xn)
...

yn = fn(x1, . . . , xn)

maps a vector (x1, . . . , xn) ∈ Rn into a vector (y1, . . . , yn) ∈ Rn. Many
times we are interested in the solution to such systems. In some special
cases, the solution will be some (x∗1, . . . , x

∗
n) ∈ Rn, where

x∗1 = f1(x
∗
1, . . . , x

∗
n)

...

x∗n = fn(x∗1, . . . , x
∗
n)

A vector x∗ = (x∗1, . . . , x
∗
n) is called a fixed point of the function f : Rn →

Rn. The phrase “fixed point” is used here because, should such a point
exist, it will be one that is left undisturbed, or unmoved by the mapping in
going from the domain to the range.

Many profound questions about the fundamental consistency of microe-
conomic systems have been answered by reformulating the question as one
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of the existence of a fixed point. One very powerful theorem provides us
with sufficient conditions under which a fixed point is guaranteed to exist.

Theorem 3.5.3 (Brouwer Fixed-Point Theorem) Let S ⊂ Rn be a non-
empty compact and convex set. Let f : S → S be a continuous function.
Then there exists at least one fixed point of f in S. That is, there exists at
least one x∗ ∈ S such that x∗ = f(x∗).

Proof is quite technical and it can be found in Border (1985).
Now we consider some theorem of a geometric nature with many appli-

cations in economic theory. The main result states that two disjoint convex
sets in Rn can be separated by a hyperplane. In two dimensions, hyper-
planes are straight lines. With its simple geometrical interpretation, the
separation theorem in Rn is one of the most fundamental tools in mod-
ern optimization theory and an early economic application of a separation
theorem was to welfare economics.

If a is a nonzero vector in Rn and α is a real number, then the set

H = {x ∈ Rn : a · x = α}

is a hyperplane in Rn with a as its normal. Moreover, the hyperplane H
separates Rn into two convex spaces:

H+ = {x ∈ Rn : a · x ≥ α}
H− = {x ∈ Rn : a · x ≤ α}

If S and T are subsets of Rn, then H is said to separate S and T if S is
contained in one of H+ and H− and T is contained in the other. In other
words, S and T can be separated by a hyperplane if there exist a nonzero
vector a and a scalar α such that

a · x ≤ α ≤ a · y for all x in S and all y in T

Theorem 3.5.4 (Separating Hyperplane Theorem) Let S and T be two dis-
joint non-empty convex sets in Rn. Then, there exists a non zero vector a
in Rn and a scalar α such that

a · x ≤ α ≤ a · y for all x in S and all y in T

Thus, S and T are separated by the hyperplane H = {z ∈ Rn : a · z = α}.
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