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1 Introduction

The normal linear model (described, for example, in Chapter 4 of the text),

yi = β1x1i + β2x2i + · · ·+ βpxpi + εi

εi ∼ NID(0, σ2)

has one random effect, the error term εi. The parameters of the model are the regression coefficients,
β1, β2, ..., βp, and the error variance, σ

2. Usually, x1i = 1, and so β1 is a constant or intercept.
For comparison with the linear mixed model of the next section, I rewrite the linear model in matrix

form,

y = Xβ + ε

ε ∼ Nn(0, σ
2In)

where y = (y1, y2, ..., yn)′ is the response vector; X is the model matrix, with typical row x′

i = (x1i, x2i, ..., xpi);
β =(β1, β2, ..., βp)

′ is the vector of regression coefficients; ε = (ε1, ε2, ..., εn)
′ is the vector of errors; Nn rep-

resents the n-variable multivariate-normal distribution; 0 is an n× 1 vector of zeroes; and In is the order-n
identity matrix.
So-called mixed-effect models (or just mixed models) include additional random-effect terms, and are

often appropriate for representing clustered, and therefore dependent, data – arising, for example, when
data are collected hierarchically, when observations are taken on related individuals (such as siblings), or
when data are gathered over time on the same individuals.
There are several facilities in R and S-PLUS for fitting mixed models to data, the most ambitious of

which is the nlme library (an acronym for non-linear mixed effects), described in detail by Pinheiro and
Bates (2000). Despite its name, this library includes facilities for fitting linear mixed models (along with
nonlinear mixed models), the subject of the present appendix. There are plans to incorporate generalized

linear mixed models (for example, for logistic and Poisson regression) in the nlme library. In the interim,
the reader may wish to consult the documentation for the glmmPQL function in Venables and Ripley’s (1999)
MASS library.1

Mixed models are a large and complex subject, and I will only scrape the surface here. I recommend
Raudenbush and Bryk (2002) as a general, relatively gentle, introduction to the subject for social scientists,
and Pinheiro and Bates (2000), which I have already mentioned, as the definitive reference for the nlme

library.

2 The Linear Mixed Model

Linear mixed models may be expressed in different but equivalent forms. In the social and behavioral
sciences, it is common to express such models in hierarchical form, as explained in the next section. The

1Version 6.3-2 of the MASS library (or, I assume, a newer version) is required.
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lme (linear mixed effects) function in the nlme library, however, employs the Laird-Ware form of the linear
mixed model (after a seminal paper on the topic published by Laird and Ware, 1982):

yij = β1x1ij + · · ·+ βpxpij (1)

+bi1z1ij + · · ·+ biqzqij + εij

bik ∼ N(0, ψ2

k),Cov(bk, bk′) = ψkk′

εij ∼ N(0, σ2λijj),Cov(εij , εij′) = σ2λijj′

where

• yij is the value of the response variable for the jth of ni observations in the ith ofM groups or clusters.

• β1, . . . , βp are the fixed-effect coefficients, which are identical for all groups.

• x1ij , . . . , xpij are the fixed-effect regressors for observation j in group i; the first regressor is usually
for the constant, x1ij = 1.

• bi1, . . . , biq are the random-effect coefficients for group i, assumed to be multivariately normally dis-
tributed. The random effects, therefore, vary by group. The bik are thought of as random variables,
not as parameters, and are similar in this respect to the errors εij .

• z1ij , . . . , zqij are the random-effect regressors.

• ψ
2

k are the variances and ψkk′ the covariances among the random effects, assumed to be constant
across groups. In some applications, the ψ’s are parametrized in terms of a relatively small number of
fundamental parameters.

• εij is the error for observation j in group i. The errors for group i are assumed to be multivariately
normally distributed.

• σ2λijj′ are the covariances between errors in group i. Generally, the λijj′ are parametrized in terms of
a few basic parameters, and their specific form depends upon context. For example, when observations
are sampled independently within groups and are assumed to have constant error variance (as in the
application developed in the following section), λijj = σ2, λijj′ = 0 (for j �= j′), and thus the only free
parameter to estimate is the common error variance, σ2. Similarly, if the observations in a “group”
represent longitudinal data on a single individual, then the structure of the λ’s may be specified to
capture autocorrelation among the errors, as is common in observations collected over time.

Alternatively but equivalently, in matrix form,

yi = Xiβ + Zibi + εi

bi ∼ Nq(0,Ψ)

εi ∼ Nni
(0,σ2

Λi)

where

• yi is the ni × 1 response vector for observations in the ith group.

• Xi is the ni × p model matrix for the fixed effects for observations in group i.

• β is the p× 1 vector of fixed-effect coefficients.

• Zi is the ni × q model matrix for the random effects for observations in group i.

• bi is the q × 1 vector of random-effect coefficients for group i.

• εi is the ni × 1 vector of errors for observations in group i.

• Ψ is the q × q covariance matrix for the random effects.

• σ2Λi is the ni × ni covariance matrix for the errors in group i.
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3 An Illustrative Application to Hierarchical Data

Applications of mixed models to hierarchical data have become common in the social sciences, and nowhere
more so than in research on education. The following example is borrowed from Bryk and Raudenbush’s
influential (1992) text on hierarchical linear models, and also appears in a paper by Singer (1998), which
shows how such models can be fit by the MIXED procedure in SAS.2

The data for the example, from the 1982 “High School and Beyond” survey, and pertain to 7185 high-
school students from 160 schools, are present in the data frames MathAchieve and MathAchSchool, dis-
tributed with the nlme library:3

> library(nlme)

Loading required package: nls

> library(lattice) # for Trellis graphics

Loading required package: grid

> data(MathAchieve)

> MathAchieve[1:10,] # first 10 students

Grouped Data: MathAch ~ SES | School

School Minority Sex SES MathAch MEANSES

1 1224 No Female -1.528 5.876 -0.428

2 1224 No Female -0.588 19.708 -0.428

3 1224 No Male -0.528 20.349 -0.428

4 1224 No Male -0.668 8.781 -0.428

5 1224 No Male -0.158 17.898 -0.428

6 1224 No Male 0.022 4.583 -0.428

7 1224 No Female -0.618 -2.832 -0.428

8 1224 No Male -0.998 0.523 -0.428

9 1224 No Female -0.888 1.527 -0.428

10 1224 No Male -0.458 21.521 -0.428

> data(MathAchSchool)

> MathAchSchool[1:10,] # first 10 schools

School Size Sector PRACAD DISCLIM HIMINTY MEANSES

1224 1224 842 Public 0.35 1.597 0 -0.428

1288 1288 1855 Public 0.27 0.174 0 0.128

1296 1296 1719 Public 0.32 -0.137 1 -0.420

1308 1308 716 Catholic 0.96 -0.622 0 0.534

1317 1317 455 Catholic 0.95 -1.694 1 0.351

1358 1358 1430 Public 0.25 1.535 0 -0.014

1374 1374 2400 Public 0.50 2.016 0 -0.007

1433 1433 899 Catholic 0.96 -0.321 0 0.718

1436 1436 185 Catholic 1.00 -1.141 0 0.569

1461 1461 1672 Public 0.78 2.096 0 0.683

The first data frame pertains to students, and there is therefore one row in the data frame for each of the
7185 students; the second data frame pertains to schools, and there is one row for each of the 160 schools.
We shall require the following variables:

• School: an identification number for the student’s school. Although it is not required by lme, students
in a specific school are in consecutive rows of the data frame, a convenient form of data organiza-

2The data were obtained from Singer. There is now a second edition of Bryk and Raudenbush’s text, Raudenbush and Bryk
(2002).

3These are actually grouped-data objects, which include some additional information along with the data. See the discussion
below.
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tion. The schools define groups – it is unreasonable to suppose that students in the same school are
independent of one-another.

• SES: the socioeconomic status of the student’s family, centered to an overall mean of 0 (within rounding
error).

• MathAch: the student’s score on a math-achievement test.

• Sector: a factor coded ’Catholic’ or ’Public’. Note that this is a school-level variable and hence
is identical for all students in the same school. A variable of this kind is sometimes called an outer

variable, to distinguish it from an inner variable (such as SES), which varies within groups. Because the
variable resides in the school data set, we need to copy it over to the appropriate rows of the student
data set. Such data-management tasks are common in preparing data for mixed-modeling.

• MEANSES: another outer variable, giving the mean SES for students in each school. Notice that this
variable already appears in both data sets. The variable, however, seems to have been calculated
incorrectly – that is, its values are slightly different from the school means – and I will therefore
recompute it (using tapply – see Section 8.4 of the text) and replace it in the student data set:

> attach(MathAchieve)

> mses <- tapply(SES, School, mean) # school means

> mses[as.character(MathAchSchool$School[1:10])] # for first 10 schools

1224 1288 1296 1308 1317 1358

-0.434383 0.121600 -0.425500 0.528000 0.345333 -0.019667

1374 1433 1436 1461

-0.012643 0.712000 0.562909 0.677455

> detach(MathAchieve)

>

The nlme and trellis Libraries in S-PLUS

In S-PLUS, the nlme library (called nlme3) and the trellis library are in the search path at the beginning
of the session and need not be attached via the library function.

I begin by creating a new data frame, called Bryk, containing the inner variables that we require:

> Bryk <- as.data.frame(MathAchieve[, c("School", "SES", "MathAch")])

> names(Bryk) <- c("school", "ses", "mathach")

> sample20 <- sort(sample(7185, 20)) # 20 randomly sampled students

> Bryk[sample20, ]

school ses mathach

20 1224 -0.078 16.405

280 1433 0.952 19.033

1153 2526 -0.708 7.359

1248 2629 -0.598 17.705

1378 2655 -0.548 17.205

1939 3152 -0.628 15.751

2182 3499 0.592 10.491

2307 3610 -0.678 8.565

2771 4042 1.082 15.297

2779 4042 0.292 20.672

2885 4223 -0.188 17.984

3016 4292 0.292 23.619
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4308 6144 -0.848 2.799

4909 6816 -0.148 16.446

5404 7345 -1.528 8.788

5704 7890 0.802 3.744

5964 8193 -0.828 10.748

6088 8477 -0.398 16.305

6637 9021 1.512 9.930

7154 9586 1.082 14.266

By using as.data.frame, I make Bryk an ordinary data frame rather than a grouped-data object. I rename
the variables to lower-case in conformity with my usual practice – data frames start with upper-case letters,
variables with lower-case letters.
Next, I add the outer variables to the data frame, in the process computing a version of SES, called cses,

that is centered at the school mean:

> Bryk$meanses <- mses[as.character(Bryk$school)]

> Bryk$cses <- Bryk$ses - Bryk$meanses

> sector <- MathAchSchool$Sector

> names(sector) <- row.names(MathAchSchool)

> Bryk$sector <- sector[as.character(Bryk$school)]

> Bryk[sample20,]

school ses mathach meanses cses sector

20 1224 -0.078 16.405 -0.434383 0.35638 Public

280 1433 0.952 19.033 0.712000 0.24000 Catholic

1153 2526 -0.708 7.359 0.326912 -1.03491 Catholic

1248 2629 -0.598 17.705 -0.137649 -0.46035 Catholic

1378 2655 -0.548 17.205 -0.701654 0.15365 Public

1939 3152 -0.628 15.751 0.031038 -0.65904 Public

2182 3499 0.592 10.491 0.449895 0.14211 Catholic

2307 3610 -0.678 8.565 0.120125 -0.79813 Catholic

2771 4042 1.082 15.297 0.402000 0.68000 Catholic

2779 4042 0.292 20.672 0.402000 -0.11000 Catholic

2885 4223 -0.188 17.984 -0.094000 -0.09400 Catholic

3016 4292 0.292 23.619 -0.486154 0.77815 Catholic

4308 6144 -0.848 2.799 -0.437535 -0.41047 Public

4909 6816 -0.148 16.446 0.528909 -0.67691 Catholic

5404 7345 -1.528 8.788 0.033250 -1.56125 Public

5704 7890 0.802 3.744 -0.522706 1.32471 Public

5964 8193 -0.828 10.748 -0.176605 -0.65140 Catholic

6088 8477 -0.398 16.305 -0.196108 -0.20189 Public

6637 9021 1.512 9.930 0.626643 0.88536 Catholic

7154 9586 1.082 14.266 0.621153 0.46085 Catholic

The following steps are a bit tricky:

• The students’ school numbers (in Bryk$school) are converted to character values, used to index the
outer variables in the school dataset. This procedure assigns the appropriate values of meanses and
sector to each student.

• To make this indexing work for the Sector variable in the school data set, the variable is assigned to
the global vector sector, whose names are then set to the row names of the school data frame.

Following Bryk and Raudenbush, we will ask whether math achievement is related to socioeconomic
status; whether this relationship varies systematically by sector; and whether the relationship varies randomly
across schools within the same sector.
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3.1 Examining the Data

As in all data analysis, it is advisable to examine the data before embarking upon statistical modeling. There
are too many schools to look at each individually, so I start by selecting samples of 20 public and 20 Catholic
schools, storing each sample as a grouped-data object:

> attach(Bryk)

> cat <- sample(unique(school[sector==’Catholic’]), 20)

> Cat.20 <- groupedData(mathach ~ ses | school,

+ data=Bryk[is.element(school, cat),])

> pub <- sample(unique(school[sector==’Public’]), 20)

> Pub.20 <- groupedData(mathach ~ ses | school,

+ data=Bryk[is.element(school, pub),])

>

Grouped-data objects are enhanced data frames, provided by the nlme library, incorporating a model formula
that gives information about the structure of the data. In this instance, the formula mathach ~ses | school,
read as “mathach is modeled as ses given school,” indicates that mathach is the response variable, ses is
the principal within-group (i.e., inner) covariate, and school is the grouping variable.
Although nlme provides a plotmethod for grouped-data objects, which makes use of Trellis graphics, the

graphs are geared more towards longitudinal data than hierarchical data. In the present context, therefore,
I prefer to use Trellis graphics directly, as follows:

> trellis.device(color=F)

> xyplot(mathach ~ ses | school, data=Cat.20, main="Catholic",

+ panel=function(x, y){

+ panel.xyplot(x, y)

+ panel.loess(x, y, span=1)

+ panel.lmline(x, y, lty=2)

+ }

+ )

> xyplot(mathach ~ ses | school, data=Pub.20, main="Public",

+ panel=function(x, y){

+ panel.xyplot(x, y)

+ panel.loess(x, y, span=1)

+ panel.lmline(x, y, lty=2)

+ }

+ )

>

• The call to trellis.device creates a graphics-device window appropriately set up for Trellis graphics;
in this case, I have specified monochrome graphics (color = F) so that this appendix will print well
in black-and-white; the default is to use color.

• The xyplot function draws a Trellis display of scatterplots of math achievement against socioeconomic
status, one scatterplot for each school, as specified by the formula mathach ~ ses | school. The
school number appears in the strip label above each plot. I created one display for Catholic schools
(Figure 1) and another for public schools (Figure 2). The argument main to xyplot supplies the title
of each graph.

• The content of each cell (or panel) of the Trellis display is determined by the panel argument to
xyplot, here an anonymous function defined “on the fly.” This function takes two arguments, x and
y, giving respectively the horizontal and vertical coordinates of the points in a panel, and successively
calls three standard panel functions:
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Figure 1: Trellis display of math achievement by socio-economic status for 20 randomly selected Catholic
schools. The broken lines give linear least-squares fits, the solid lines local-regression fits.

— panel.xyplot (which is the default panel function for xyplot) creates a basic scatterplot.

— panel.loess draws a local regression line on the plot. Because there is a relatively small number
of observations for each school, I set the span of the local-regression smoother to 1. (See the
Appendix on nonparametric regression for details.)

— panel.lmline similarly draws a least-squares line; the argument lty=2 produces a broken line.

Examining the scatterplots in Figures 1 and 2, there is a weak positive relationship between math
achievement and SES in most Catholic schools, although there is variation among schools: In some schools
the slope of the regression line is near zero or even negative. There is also a positive relationship between
the two variables for most of the public schools, and here the average slope is larger. Considering the
small number of students in each school, linear regressions appear to do a reasonable job of capturing the
within-school relationships between math achievement and SES.
The nlme library includes the function lmList for fitting a linear model to the observations in each group,

returning a list of linear-model objects, which is itself an object of class "lmList". Here, I fit the regression
of math-achievement scores on socioeconomic status for each school, creating separate lmList objects for
Catholic and public schools:

> cat.list <- lmList(mathach ~ ses | school, subset = sector==’Catholic’,

+ data=Bryk)

> pub.list <- lmList(mathach ~ ses | school, subset = sector==’Public’,

+ data=Bryk)

>

Several methods exist for manipulating lmList objects. For example, the generic intervals function has
a method for objects of this class that returns (by default) 95-percent confidence intervals for the regression
coefficients; the confidence intervals can be plotted, as follows:

> plot(intervals(cat.list), main=’Catholic’)

> plot(intervals(pub.list), main=’Public’)

>
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Figure 2: Trellis display of math achievement by socio-economic status for 20 randomly selected public
schools.
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Figure 3: 95-percent confidence intervals for the intercepts and slopes of the within-schools regressions of
math achievement on SES, for Catholic schools.
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Figure 4: 95-percent confidence intervals for the intercepts and slopes of the within-schools regressions of
math achievement on SES, for public schools.

The resulting graphs are shown in Figures 3 and 4. In interpreting these graphs, we need to be careful to
remember that I have not constrained the scales for the plots to be the same, and indeed the scales for the
intercepts and slopes in the public schools are wider than in the Catholic schools. Because the SES variable
is centered to zero, the intercepts are interpretable as the predicted levels of math achievement in each school
at an overall average level of SES. It is clear that there is substantial variation in the intercepts among both
Catholic and public schools; the confidence intervals for the slopes, in contrast, overlap to a much greater
extent, but there is still apparent school-to-school variation.
To facilitate comparisons between the distributions of intercepts and slopes across the two sectors, I draw

parallel boxplots for the coefficients:

> cat.coef <- coef(cat.list)

> cat.coef[1:10,]

(Intercept) ses

1308 16.1890 0.12602

1317 12.7378 1.27391

1433 18.3989 1.85429

1436 17.2106 1.60056

1462 9.9408 -0.82881

1477 14.0321 1.23061

1906 14.8855 2.14551

2208 14.2889 2.63664

2277 7.7623 -2.01503

2305 10.6466 -0.78211

> pub.coef <- coef(pub.list)

> pub.coef[1:10,]

(Intercept) ses

1224 10.8051 2.508582

1288 13.1149 3.255449
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Figure 5: Boxplots of intercepts and slopes for the regressions of math achievement on SES in Catholic and
public schools.

1296 8.0938 1.075959

1358 11.3059 5.068009

1374 9.7772 3.854323

1461 12.5974 6.266497

1499 9.3539 3.634734

1637 9.2227 3.116806

1909 13.7151 2.854790

1942 18.0499 0.089383

> old <- par(mfrow=c(1,2))

> boxplot(cat.coef[,1], pub.coef[,1], main=’Intercepts’,

+ names=c(’Catholic’, ’Public’))

> boxplot(cat.coef[,2], pub.coef[,2], main=’Slopes’,

+ names=c(’Catholic’, ’Public’))

> par(old)

>

The calls to coef extract matrices of regression coefficients from the lmList objects, with rows representing
schools. Setting mfrow to 1 row and 2 columns produces the side-by-side pairs of boxplots in Figure 5; mfrow
is then returned to its previous value. At an average level of SES, the Catholic schools have a higher average
level of math achievement than the public schools, while the average slope relating math achievement to SES
is larger in the public schools than in the Catholic schools.

3.2 Fitting a Hierarchical Linear Model with lme

Following Bryk and Raudenbush (1992) and Singer (1998), I will fit a hierarchical linear model to the math-
achievement data. This model consists of two equations: First, within schools, we have the regression of
math achievement on the individual-level covariate SES; it aids interpretability of the regression coefficients
to center SES at the school average; then the intercept for each school estimates the average level of math

10



achievement in the school.
Using centered SES, the individual-level equation for individual j in school i is

mathachij = α0i + α1icsesij + εij (2)

At the school level, also following Bryk and Raudenbush, I will entertain the possibility that the school
intercepts and slopes depend upon sector and upon the average level of SES in the schools:

α0i = γ00 + γ01meansesi + γ02sectori + u0i (3)

α1i = γ10 + γ11meansesi + γ12sectori + u1i

This kind of formulation is sometimes called a coefficients-as-outcomes model.
Substituting the school-level equation 3 into the individual-level equation 2 produces

mathachij = γ00 + γ01meansesi + γ02sectori + u0i

+(γ10 + γ11meansesi + γ12sectori + u1j)csesij + εij

Rearranging terms,

mathachij = γ00 + γ01meansesi + γ02sectori + γ10csesij

+γ11meansesicsesij + γ12sectoricsesij

+u0i + u1icsesij + εij

Here, the γ’s are fixed effects, while the u’s (and the individual-level errors εij) are random effects.
Finally, rewriting the model in the notation of the linear mixed model (equation 1),

mathachij = β1 + β2meansesi + β3sectori + β4csesij (4)

+β5meansesicsesij + β6sectoricsesij

+bi1 + bi2csesij + εij

The change is purely notational, using β’s for fixed effects and b’s for random effects. (In the data set,
however, the school-level variables – that is, meanses and sector – are attached to the observations for
the individual students, as previously described.) I place no constraints on the covariance matrix of the
random effects, so

Ψ = V

[
bi1
bi2

]
=

[
ψ2
1 ψ12

ψ12 ψ2
2

]
but assume that the individual-level errors are independent within schools, with constant variance:

V (εi) = σ2
Ini

As mentioned in Section 2, linear mixed models are fit with the lme function in the nlme library. Specifying
the fixed effects in the call to lme is identical to specifying a linear model in a call to lm (see Chapter 4
of the text). Random effects are specified via the random argument to lme, which takes a one-sided model
formula.
Before fitting a mixed model to the math-achievement data, I reorder the levels of the factor sector so

that the contrast coding the sector effect will use the value 0 for the public sector and 1 for the Catholic
sector, in conformity with the coding employed by Bryk and Raudenbush (1992) and by Singer (1998):

> Bryk$sector <- factor(Bryk$sector, levels=c(’Public’, ’Catholic’))

> contrasts(Bryk$sector)

Catholic

Public 0

Catholic 1
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Reminder: Default Contrast Coding in S-PLUS

Recall that in S-PLUS, the default contrast function for unordered factors is contr.helmert rather
than contr.treatment. As described in Section 4.2 of the text, there are several ways to change
the contrast coding, including resetting the global default: options(contrasts=c(’contr.treatment’,
’contr.poly’)).

Having established the contrast-coding for sector, the linear mixed model in equation 4 is fit as follows:

> bryk.lme.1 <- lme(mathach ~ meanses*cses + sector*cses,

> random = ~ cses | school,

> data=Bryk)

> summary(bryk.lme.1)

Linear mixed-effects model fit by REML

Data: Bryk

AIC BIC logLik

46525 46594 -23252

Random effects:

Formula: ~cses | school

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.541177 (Intr)

cses 0.018174 0.006

Residual 6.063492

Fixed effects: mathach ~ meanses * cses + sector * cses

Value Std.Error DF t-value p-value

(Intercept) 12.1282 0.19920 7022 60.886 <.0001

meanses 5.3367 0.36898 157 14.463 <.0001

cses 2.9421 0.15122 7022 19.456 <.0001

sectorCatholic 1.2245 0.30611 157 4.000 1e-04

meanses:cses 1.0444 0.29107 7022 3.588 3e-04

cses:sectorCatholic -1.6421 0.23312 7022 -7.044 <.0001

Correlation:

(Intr) meanss cses sctrCt mnss:c

meanses 0.256

cses 0.000 0.000

sectorCatholic -0.699 -0.356 0.000

meanses:cses 0.000 0.000 0.295 0.000

cses:sectorCatholic 0.000 0.000 -0.696 0.000 -0.351

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.170106 -0.724877 0.014892 0.754263 2.965498

Number of Observations: 7185

Number of Groups: 160

Notice that the formula for the random effects includes only the term for centered SES; as in a linear-
model formula, a random intercept is implied unless it is explicitly excluded (by specifying -1 in the random
formula). By default, lme fits the model by restricted maximum likelihood (REML), which in effect corrects
the maximum-likelihood estimator for degrees of freedom. See Pinheiro and Bates (2000) for details on this
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and other points.
The output from the summary method for lme objects consists of several panels:

• The first panel gives the AIC (Akaike information criterion) and BIC (Bayesian information criterion),
which can be used for model selection (see Section 6.5.2 of the text), along with the log of the maximized
restricted likelihood.

• The next panel displays estimates of the variance and covariance parameters for the random effects,
in the form of standard deviations and correlations. The term labelled Residual is the estimate of σ.
Thus, ψ̂1 = 1.541, ψ̂2 = 0.018, σ̂ = 6.063, and ψ̂12 = 0.006× 1.541× 0.018 = 0.0002.

• The table of fixed effects is similar to output from lm; to interpret the coefficients in this table, refer
to the hierarchical form of the model given in equations 2 and 3, and to the Laird-Ware form of the
linear mixed model in equation 4 (which orders the coefficients differently from the lme output). In
particular:

— The fixed-effect intercept coefficient β̂1 = 12.128 represents an estimate of the average level of
math achievement in public schools, which are the baseline category for the dummy regressor for
sector.

— Likewise, the coefficient labelled sectorCatholic, β̂3 = 1.225, represents the difference between
the average level of math achievement in Catholic schools and public schools.

— The coefficient for cses, β̂4 = 2.942, is the estimated average slope for SES in public schools,

while the coefficient labelled cses:sectorCatholic, β̂6 = −1.642, gives the difference in average
slopes between Catholic and public schools. As we noted in our exploration of the data, the
average level of math achievement is higher in Catholic than in public schools, and the average
slope relating math achievement to students’ SES is larger in public than in Catholic schools.

— Given the parametrization of the model, the coefficient for meanses, β̂2 = 5.337, represents the
relationship of schools’ average level of math achievement to their average level of SES

— The coefficient for the interaction meanses:cses, β̂5 = 1.044, gives the average change in the
within-school SES slope associated with a one-unit increment in the school’s mean SES. Notice
that all of the coefficients are highly statistically significant.

• The panel labelled Correlation gives the estimated sampling correlations among the fixed-effect coeffi-
cient estimates, which are not usually of direct interest. Very large correlations, however, are indicative
of an ill-conditioned model.

• Some information about the standardized within-group residuals (ε̂ij/σ̂), the number of observations,
and the number of groups, appears at the end of the output.
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Different Solutions from lme in R and S-PLUS

The results for ψ̂2 (the standard deviation of the random effects of cses) and ψ̂12 (the covariance between
the random intercepts and slopes) are different in S-PLUS, where lme uses a different (and more robust)
optimizer than in R.
Comparing the maximized log-likelihoods for the two programs suggests that the R version of lme has not
converged fully to the REML solution. Checking confidence intervals for the variance components in the R
solution [by the command intervals(bryk.lme.1)] shows that the confidence interval for ψ2 in particular is
extremely wide, raising the possibility that the problem is ill-conditioned. (These normal-theory confidence
intervals for variance components should not be trusted, but they do help to reveal estimates that are not
well determined by the data.)
In the S-PLUS solution, in contrast, the confidence interval for ψ2 is much narrower, but the confidence
interval for the correlation between the two sets of random effects is very wide. Not coincidentally, it turns
out that ψ2 and ψ12 can be dropped from the model.
I am grateful to Douglas Bates and José Pinheiro for clarifying the source of the differences in the results
from the R and S-PLUS versions of nlme.

In addition to estimating and testing the fixed effects, it is of interest to determine whether there is
evidence that the variances of the random effects in the model are different from 0. We can test hypotheses
about the variances and covariances of random effects by deleting random-effects terms from the model and
noting the change in the log of the maximized restricted likelihood, calculating log likelihood-ratio statistics.
We must be careful, however, to compare models that are identical in their fixed effects.
For the current illustration, we may proceed as follows:

> bryk.lme.2 <- update(bryk.lme.1,

+ random = ~ 1 | school) # omitting random effect of cses

> anova(bryk.lme.1, bryk.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value

bryk.lme.1 1 10 46525 46594 -23252

bryk.lme.2 2 8 46521 46576 -23252 1 vs 2 0.0032069 0.9984

> bryk.lme.3 <- update(bryk.lme.1,

+ random = ~ cses - 1 | school) # omitting random intercept

> anova(bryk.lme.1, bryk.lme.3)

Model df AIC BIC logLik Test L.Ratio p-value

bryk.lme.1 1 10 46525 46594 -23252

bryk.lme.3 2 8 46740 46795 -23362 1 vs 2 219.44 <.0001

Each of these likelihood-ratio tests is on 2 degrees of freedom, because excluding one of the random effects
removes not only its variance from the model but also its covariance with the other random effect. There
is strong evidence, then, that the average level of math achievement (as represented by the intercept) varies
from school to school, but not that the coefficient of SES varies, once differences between Catholic and public
schools are taken into account, and the average level of SES in the schools is held constant.
Model bryk.lme.2, fit above, omits the non-significant random effects for cses; the fixed-effects estimates

are nearly identical to those for the initial model bryk.lme.1, which includes these random effects:

> summary(bryk.lme.2)

> summary(bryk.lme.2)

Linear mixed-effects model fit by REML

Data: Bryk

AIC BIC logLik

46521 46576 -23252
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Random effects:

Formula: ~1 | school

(Intercept) Residual

StdDev: 1.5412 6.0635

Fixed effects: mathach ~ meanses * cses + sector * cses

Value Std.Error DF t-value p-value

(Intercept) 12.1282 0.19920 7022 60.885 <.0001

meanses 5.3367 0.36898 157 14.463 <.0001

cses 2.9421 0.15121 7022 19.457 <.0001

sectorCatholic 1.2245 0.30612 157 4.000 1e-04

meanses:cses 1.0444 0.29105 7022 3.589 3e-04

cses:sectorCatholic -1.6422 0.23309 7022 -7.045 <.0001

Correlation:

(Intr) meanss cses sctrCt mnss:c

meanses 0.256

cses 0.000 0.000

sectorCatholic -0.699 -0.356 0.000

meanses:cses 0.000 0.000 0.295 0.000

cses:sectorCatholic 0.000 0.000 -0.696 0.000 -0.351

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.170115 -0.724877 0.014845 0.754242 2.965513

Number of Observations: 7185

Number of Groups: 160

4 An Illustrative Application to Longitudinal Data

To illustrate the use of linear mixed models for longitudinal research, I draw on as-yet unpublished data
collected by Blackmoor and Davis on the exercise histories of 138 teenaged girls hospitalized for eating
disorders, and on a group of 93 ‘control’ subjects.4 The data are in the data frame Blackmoor in the car
library:

> library(car) # for data only

. . .

> data(Blackmoor) # from car

> Blackmoor[1:20,] # first 20 observations

subject age exercise group

1 100 8.00 2.71 patient

2 100 10.00 1.94 patient

3 100 12.00 2.36 patient

4 100 14.00 1.54 patient

5 100 15.92 8.63 patient

6 101 8.00 0.14 patient

7 101 10.00 0.14 patient

8 101 12.00 0.00 patient

9 101 14.00 0.00 patient

10 101 16.67 5.08 patient

4These data were generously made available to me by Elizabeth Blackmoor and Caroline Davis of York University.
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11 102 8.00 0.92 patient

12 102 10.00 1.82 patient

13 102 12.00 4.75 patient

15 102 15.08 24.72 patient

16 103 8.00 1.04 patient

17 103 10.00 2.90 patient

18 103 12.00 2.65 patient

20 103 14.08 6.86 patient

21 104 8.00 2.75 patient

22 104 10.00 6.62 patient

The variables are:

• subject: an identification code; there are several observations for each subject, but because the girls
were hospitalized at different ages, the number of observations, and the age at the last observation,
vary.

• age: the subject’s age in years at the time of observation; all but the last observation for each subject
were collected retrospectively at intervals of two years, starting at age eight.

• exercise: the amount of exercise in which the subject engaged, expressed as estimated hours per
week.

• group: a factor indicating whether the subject is a ’patient’ or a ’control’.5

4.1 Examining the Data

Initial examination of the data suggested that it is advantageous to take the log of exercise: Doing so
makes the exercise distribution for both groups of subjects more symmetric and linearizes the relationship
of exercise to age. Because there are some 0 values of exercise, I use “started” logs in the analysis
reported below (see Section 3.4 of the text on transforming data), adding five minutes (5/60 of an hour) to
each value of exercise prior to taking logs (and using logs to the base 2 for interpretability):

> Blackmoor$log.exercise <- log(Blackmoor$exercise + 5/60, 2)

> attach(Blackmoor)

>

As in the analysis of the math-achievement data in the preceding section, I begin by sampling 20 subjects
from each of the patient and control groups, plotting log.exercise against age for each subject:

> pat <- sample(unique(subject[group==’patient’]), 20)

> Pat.20 <- groupedData(log.exercise ~ age | subject,

+ data=Blackmoor[is.element(subject, pat),])

> con <- sample(unique(subject[group==’control’]), 20)

> Con.20 <- groupedData(log.exercise ~ age | subject,

+ data=Blackmoor[is.element(subject, con),])

> print(plot(Con.20, main=’Control Subjects’,

+ xlab=’Age’, ylab=’log2 Exercise’,

+ ylim=1.2*range(Con.20$log.exercise, Pat.20$log.exercise),

+ layout=c(5, 4), aspect=1.0),

+ position=c(0, 0, 1, .5), more=T)

5To avoid the possibility of confusion, I point out that the variable group represents groups of independent patients and
control subjects, and is not a factor defining clusters. Clusters in this longitudinal data set are defined by the variable subject.
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> print(plot(Pat.20, main=’Patients’,

+ xlab=’Age’, ylab=’log2 Exercise’,

+ ylim=1.2*range(Con.20$log.exercise, Pat.20$log.exercise),

+ layout=c(5, 4), aspect=1.0),

+ position=c(0, .5, 1, 1))

>

The graphs appear in Figure 6.

• Each Trellis plot is constructed by using the default plot method for grouped-data objects.

• To make the two plots comparable, I have exercised direct control over the scale of the vertical axis
(set to slightly larger than the range of the combined log-exercise values), the layout of the plot (5
columns, 4 rows)6 , and the aspect ratio of the plot (the ratio of the vertical to the horizontal size of
the plotting region in each panel, set here to 1.0).

• The print method for Trellis objects, normally automatically invoked when the returned object is not
assigned to a variable, simply plots the object on the active graphics device. So as to print both plots
on the same “page,” I have instead called print explicitly, using the position argument to place each
graph on the page. The form of this argument is c(xmin, ymin, xmax, ymax), with horizontal (x)
and vertical (y) coordinates running from 0, 0 (the lower-left corner of the page) to 1, 1 (the upper-
right corner). The argument more=T in the first call to print indicates that the graphics page is not
yet complete.

There are few observations for each subject, and in many instances, no strong within-subject pattern.
Nevertheless, it appears as if the general level of exercise is higher among the patients than among the
controls. As well, the trend for exercise to increase with age appears stronger and more consistent for the
patients than for the controls.
I pursue these impressions by fitting regressions of log.exercise on age for each subject. Because of the

small number of observations per subject, we should not expect very good estimates of the within-subject
regression coefficients. Indeed, one of the advantages of mixed models is that they can provide improved
estimates of the within-subject coefficients (the random effects) by pooling information across subjects.7

> pat.list <- lmList(log.exercise ~ I(age - 8) | subject,

+ subset = group==’patient’, data=Blackmoor)

> con.list <- lmList(log.exercise ~ I(age - 8) | subject,

+ subset = group==’control’, data=Blackmoor)

> pat.coef <- coef(pat.list)

> con.coef <- coef(con.list)

> old <- par(mfrow=c(1,2))

> boxplot(pat.coef[,1], con.coef[,1], main=’Intercepts’,

+ names=c(’Patients’, ’Controls’))

> boxplot(pat.coef[,2], con.coef[,2], main=’Slopes’,

+ names=c(’Patients’, ’Controls’))

> par(old)

>

The boxplots of regression coefficients are shown in Figure 7. I changed the origin of age to 8 years, which is
the initial observation for each subject, so the intercept represents level of exercise at the start of the study.
As expected, there is a great deal of variation in both the intercepts and the slopes. The median intercepts
are similar for patients and controls, but there is somewhat more variation among patients. The slopes are
higher on average for patients than for controls, for whom the median slope is close to 0.

6Notice the unusual ordering in specifying the layout – columns first, then rows.
7Pooled estimates of the random effects provide so-called best-linear-unbiased predictors (or BLUPs). See help(predict.lme)

and Pinheiro and Bates (2000).
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Figure 6: log2 exercise by age for 20 randomly selected patients and 20 randomly selected control subjects.
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Figure 7: Coefficients for the within-subject regressions of log2 exercise on age, for patients and control
subjects

4.2 Fitting the Mixed Model

I proceed to fit a linear mixed model to the data, including fixed effects for age (again, with an origin of 8),
group, and their interaction, and random intercepts and slopes:

> bm.lme.1 <- lme(log.exercise ~ I(age - 8)*group,

+ random = ~ I(age - 8) | subject,

+ data=Blackmoor)

> summary(bm.lme.1)

Linear mixed-effects model fit by REML

Data: Blackmoor

AIC BIC logLik

3630.1 3668.9 -1807.1

Random effects:

Formula: ~I(age - 8) | subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.44356 (Intr)

I(age - 8) 0.16480 -0.281

Residual 1.24409

Fixed effects: log.exercise ~ I(age - 8) * group

Value Std.Error DF t-value p-value

(Intercept) -0.27602 0.182368 712 -1.5135 0.1306

I(age - 8) 0.06402 0.031361 712 2.0415 0.0416

grouppatient -0.35400 0.235291 229 -1.5045 0.1338

I(age - 8):grouppatient 0.23986 0.039408 712 6.0866 <.0001

Correlation:
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(Intr) I(g-8) grpptn

I(age - 8) -0.489

grouppatient -0.775 0.379

I(age - 8):grouppatient 0.389 -0.796 -0.489

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.73486 -0.42451 0.12277 0.52801 2.63619

Number of Observations: 945

Number of Groups: 231

There is a small, and marginally statistically significant, average age trend in the control group (represented
by the fixed-effect coefficient for age - 8), and a highly significant interaction of age with group, reflecting a
much steeper average trend in the patient group. The small and nonsignificant coefficient for group indicates
similar age-eight intercepts for the two groups.
I test whether the random intercepts and slopes are necessary, omitting each in turn from the model and

calculating a likelihood-ratio statistic, contrasting the refit model with the original model:

> bm.lme.2 <- update(bm.lme.1, random = ~ 1 | subject)

> anova(bm.lme.1, bm.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 8 3630.1 3668.9 -1807.1

bm.lme.2 2 6 3644.3 3673.3 -1816.1 1 vs 2 18.122 1e-04

> bm.lme.3 <- update(bm.lme.1, random = ~ I(age - 8) - 1 | subject)

> anova(bm.lme.1, bm.lme.3)

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 8 3630.1 3668.9 -1807.1

bm.lme.3 2 6 3834.1 3863.2 -1911.0 1 vs 2 207.95 <.0001

The tests are highly statistically significant, suggesting that both random intercepts and random slopes are
required.
Let us next consider the possibility that the within-subject errors (the εij ’s in the mixed model) are

auto-correlated – as may well be the case, since the observations are taken longitudinally on the same
subjects. The lme function incorporates a flexible mechanism for specifying correlation structures, and
supplies constructor functions for several such structures.8 Most of these correlation structures, however,
are appropriate only for equally spaced observations. An exception is the corCAR1 function, which permits
us to fit a continuous first-order autoregressive process in the errors. Suppose that εit and εi,t+s are errors
for subject i separated by s units of time, where s need not be an integer; then, according to the continuous
first-order autoregressive model, the correlation between these two errors is ρ(s) = φ|s| where 0 ≤ φ < 1.
This appears a reasonable specification in the current context, where there are at most ni = 5 observations
per subject.
Fitting the model with CAR1 errors to the data produces the following results:

> bm.lme.4 <- update(bm.lme.1, correlation = corCAR1(form = ~ age |subject))

> summary(bm.lme.4)

Linear mixed-effects model fit by REML

Data: Blackmoor

AIC BIC logLik

3607.1 3650.8 -1794.6

Random effects:

8A similar mechanism is provided for modeling non-constant variance, via the weights argument to lme. See the documen-

tation for lme for details.
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Formula: ~I(age - 8) | subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.053381 (Intr)

I(age - 8) 0.047939 0.573

Residual 1.514138

Correlation Structure: Continuous AR(1)

Formula: ~age | subject

Parameter estimate(s):

Phi

0.6236

Fixed effects: log.exercise ~ I(age - 8) * group

Value Std.Error DF t-value p-value

(Intercept) -0.306202 0.182027 712 -1.6822 0.0930

I(age - 8) 0.072302 0.032020 712 2.2580 0.0242

grouppatient -0.289267 0.234968 229 -1.2311 0.2196

I(age - 8):grouppatient 0.230054 0.040157 712 5.7289 <.0001

Correlation:

(Intr) I(g-8) grpptn

I(age - 8) -0.509

grouppatient -0.775 0.395

I(age - 8):grouppatient 0.406 -0.797 -0.511

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.67829 -0.46383 0.16530 0.58823 2.11817

Number of Observations: 945

Number of Groups: 231

The correlation structure is given in the correlation argument to lme (here as a call to corCAR1); the form
argument to corCAR1 is a one-sided formula defining the time dimension (here, age) and the group structure

(subject). The estimated autocorrelation, φ̂ = 0.62, is quite large, but the fixed-effects estimates and their
standard errors have not changed much.9 A likelihood-ratio test establishes the statistical significance of the
error autocorrelation:

> anova(bm.lme.1, bm.lme.4)

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 8 3630.1 3668.9 -1807.1

bm.lme.4 2 9 3607.1 3650.8 -1794.6 1 vs 2 25.006 <.0001

Because the specification of the model has changed, we can re-test whether random intercepts and slopes
are required; as it turns out, the random age term may now be removed from the model, but not the random
intercepts:

> bm.lme.5 <- update(bm.lme.4, random = ~ 1 | subject)

> anova(bm.lme.4, bm.lme.5)

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.4 1 9 3607.1 3650.8 -1794.6

bm.lme.5 2 7 3605.0 3638.9 -1795.5 1 vs 2 1.8374 0.399

> bm.lme.6 <- update(bm.lme.4, random = ~ I(age - 8) - 1 | subject)

9The large correlation between the random effects for the intercept and slope, however, suggests that the problem may be

ill-conditioned.
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> anova(bm.lme.4, bm.lme.6)

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.4 1 9 3607.1 3650.8 -1794.6

bm.lme.6 2 7 3619.9 3653.8 -1802.9 1 vs 2 16.742 2e-04

Differences in the Results in R and S-PLUS

As in the analysis of the Bryk and Raudenbush data, the lme function in S-PLUS produces different estimates
of the standard deviation of the slopes [here, the random effects for I(age - 8)] and of the correlation
between the slopes and intercepts. This time, however, the R version of the software does a slightly better
job of maximizing the restricted likelihood.
As before, this difference is evidence of an ill-conditioned problem, as may be verified by examining confidence
intervals for the estimates: In R, the confidence interval for the correlation runs from nearly −1 to almost
+1, while lme in S-PLUS is unable to calculate the confidence intervals because the estimated covariance
matrix for the random effects is not positive-definite. Also as before, the random slopes can be removed
from the model (see below).

To get a more concrete sense of the fixed effects, using model bm.lme.5 (which includes autocorrelated
errors, random intercepts, but not random slopes), I employ the predict method for lme objects to calculate
fitted values for patients and controls across the range of ages (8 to 18) represented in the data:

> pdata <- expand.grid(age=seq(8, 18, by=2), group=c(’patient’, ’control’))

> pdata$log.exercise <- predict(bm.lme.5, pdata, level=0)

> pdata$exercise <- (2^pdata$log.exercise) - 5/60

> pdata

age group log.exercise exercise

1 8 patient -0.590722 0.58068

2 10 patient 0.009735 0.92344

3 12 patient 0.610192 1.44313

4 14 patient 1.210650 2.23109

5 16 patient 1.811107 3.42578

6 18 patient 2.411565 5.23718

7 8 control -0.307022 0.72498

8 10 control -0.161444 0.81080

9 12 control -0.015866 0.90573

10 14 control 0.129712 1.01074

11 16 control 0.275291 1.12690

12 18 control 0.420869 1.25540

Specifying level=0 in the call to predict produces estimates of the fixed effects. The expression

(2ˆpdata$log.exercise) − 5/60

translates the fitted values of exercise from the log2 scale back to hours/week.
Finally, I plot the fitted values (Figure 8):

> plot(pdata$age, pdata$exercise, type=’n’,

+ xlab=’Age (years)’, ylab=’Exercise (hours/week)’)

> points(pdata$age[1:6], pdata$exercise[1:6], type=’b’, pch=19, lwd=2)

> points(pdata$age[7:12], pdata$exercise[7:12], type=’b’, pch=22, lty=2, lwd=2)

> legend(locator(1), c(’Patients’, ’Controls’), pch=c(19, 22), lty=c(1,2), lwd=2)

>
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Figure 8: Fitted values representing estimated fixed effects of group, age, and their interaction.

Notice that the legend is placed interactively with the mouse. It is apparent that the two groups of subjects
have similar average levels of exercise at age 8, but that thereafter the level of exercise increases much more
rapidly for the patient group than for the controls.

Reminder: Use of legend in S-PLUS

The plotting characters for the legend function in S-PLUS are specified via the marks argument, rather
than via pch as in R. As well, in S-PLUS, you may wish to use plotting characters 16 and 0 in place of
19 and 22.
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