The R Statistical Computing Environment Basics and Beyond Linear and Generalized Linear Models in R

John Fox

McMaster University

ICPSR/Berkeley 2016

◆ロト 4周ト 4 章 ト 4 章 ト 章 めなり

ohn Fox (McMaster University)

near and Generalized Linear Models

ICPSR/Berkeley 201

1 / 1

Linear and Generalized Linear Models in R

Topics

To be covered as time permits:

- Multiple linear regression
- Factors and dummy regression models
- Overview of the lm function
- The structure of generalized linear models (GLMs) in R; the glm function
- GLMs for binary/binomial data
- GLMs for count data

John Fox (McMaster Universit

Linear and Generalized Linear Mod

ICPSR/Berkeley 2016

0 / 1

Linear Models in R

Arguments of the Im function

- lm(formula, data, subset, weights, na.action, method =
 "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL, offset, ...)
- formula

Expression	Interpretation	Example
A + B	include both A and B	income + education
A - B	exclude B from A	a*b*d - a:b:d
A:B	all interactions of A and B	type:education
A*B	A + B + A:B	type*education
B %in% A	B nested within A	education %in% type
A/B	A + B %in% A	type/education
A^k	effects crossed to order k	$(a + b + d)^2$

Linear Models in R

Arguments of the Im function

- data: A data frame containing the data for the model.
- subset:
 - a logical vector: subset = sex == "F"
 - a numeric vector of observation indices: subset = 1:100
 - a negative numeric vector with observations to be omitted: subset = -c(6, 16)
- weights: for weighted-least-squares regression
- na.action: name of a function to handle missing data; default given by the na.action option, initially "na.omit"
- method, model, x, y, qr, singular.ok: technical arguments
- contrasts: specify list of contrasts for factors; e.g., contrasts=list(partner.status=contr.sum, fcategory=contr.poly))
- offset: term added to the right-hand-side of the model with a fixed coefficient of 1.

4 D > 4 A > 4 E > 4 E > B 9 9 P

John Fox (McMaster University)

Linear and Generalized Linear Models

ICPSR/Berkeley 2016 4 / 1

Generalized Linear Models in R

Review of the Structure of GLMs

- A generalized linear model consists of three components:
- 1 A random component, specifying the conditional distribution of the response variable, y_i , given the predictors. Traditionally, the random component is an exponential family — the normal (Gaussian), binomial, Poisson, gamma, or inverse-Gaussian.
- 2 A linear function of the regressors, called the *linear predictor*,

$$\eta_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_k x_{ik}$$

on which the expected value μ_i of y_i depends.

3 A link function $g(\mu_i) = \eta_i$, which transforms the expectation of the response to the linear predictor. The inverse of the link function is called the *mean function*: $g^{-1}(\eta_i) = \mu_i$.

Generalized Linear Models in R

Review of the Structure of GLMs

• In the following table, the logit, probit and complementary log-log links are for binomial or binary data:

Link	$\eta_i = g(\mu_i)$	$\mu_i = g^{-1}(\eta_i)$
identity	μ_i	η_i
log	$\log_e \mu_i$	e^{η_i}
inverse	$\log_e \mu_i \\ \mu_i^{-1}$	η_i^{-1}
inverse-square	μ_i^{-2}	$\eta_{i}^{-1/2}$
square-root	$\sqrt{\mu_i}$	η_j^2
logit	$\log_e \frac{\mu_i}{1-\mu_i}$	$\frac{1}{1+e^{-\eta_i}}$
probit	$\Phi(\mu_i)$	$\Phi^{-1}(\eta_i)$
complementary log-log	$\log_e[-\log_e(1-\mu_i)]$	$1 - \exp[-\exp(\eta_i)]$

Generalized Linear Models in R

Implementation of GLMs in R

- Generalized linear models are fit with the glm function. Most of the arguments of glm are similar to those of lm:
 - The response variable and regressors are given in a model formula.
 - data, subset, and na.action arguments determine the data on which the model is fit.
 - The additional family argument is used to specify a family-generator function, which may take other arguments, such as a link function.

Generalized Linear Models in R

Implementation of GLMs in R

• The following table gives family generators and default links:

Family	Default Link	Range of yi	$V(y_i \eta_i)$
gaussian	identity	$(-\infty, +\infty)$	φ
binomial	logit	$\frac{0,1,,n_i}{n_i}$	$\mu_i(1-\mu_i)$
poisson	log	0, 1, 2,	μ_i
Gamma	inverse	(0,∞)	$\phi \mu_i^2$
inverse.gaussian	1/mu^2	(0,∞)	$\phi\mu_i^3$

• For distributions in the exponential families, the variance is a function of the mean and a dispersion parameter ϕ (fixed to 1 for the binomial and Poisson distributions).

Generalized Linear Models in R

Implementation of GLMs in R

• The following table shows the links available for each family in R, with the default links as **\B**:

	link			
family	identity	inverse	sqrt	1/mu^2
gaussian				
binomial				
poisson				
Gamma				
inverse.gaussian				
quasi				
quasibinomial				
quasipoisson				

Generalized Linear Models in R

Implementation of GLMs in R

	link			
family	log	logit	probit	cloglog
gaussian				
binomial				
poisson				
Gamma				
inverse.gaussian				
quasi				
quasibinomial				
quasipoisson				

• The quasi, quasibinomial, and quasipoisson family generators do not correspond to exponential families.

Generalized Linear Models in R

GLMs for Binary/Binomial and Count Data

- The response for a binomial GLM may be specified in several forms:
 - For binary data, the response may be
 - a variable or an S expression that evaluates to 0's ('failure') and 1's ('success').
 - a logical variable or expression (with TRUE representing success, and FALSE failure).
 - a factor (in which case the first category is taken to represent failure and the others success).
 - For binomial data, the response may be
 - a two-column matrix, with the first column giving the count of successes and the second the count of failures for each binomial observation.
 - a vector giving the *proportion* of successes, while the binomial denominators (total counts or numbers of trials) are given by the weights argument to glm.

Generalized Linear Models in R

GLMs for Binary/Binomial and Count Data

- Poisson generalized linear models are commonly used when the response variable is a count (Poisson regression) and for modeling associations in contingency tables (loglinear models).
 - The two applications are formally equivalent. Poisson GLMs are fit in S using the poisson family generator with glm.
- Overdispersed binomial and Poisson models may be fit via the quasibinomial and quasipoisson families.