The R Statistical Computing Environment
Basics and Beyond
R Programming 1: Exercises

John Fox
(McMaster University)
ICPSR /Berkeley

2016

1. A simple programming problem: Write a function to compute running medians. Running me-
dians are a simple smoothing method usually applied to time-series. For example, for the
numbers 7, 5, 2, 8, 5,5, 9, 4, 7, 8, the running medians of length 3 are 5, 5, 5, 5, 5, 5, 7, 7.
The first running median is the median of the three numbers 7, 5, and 2; the second running
median is the median of 5, 2, and 8; and so on. Your function should take two arguments:
the data (say, x), and the number of observations for each median (say, length). Notice that
there are fewer running medians than observations. How many fewer?

2. A slightly more challenging problem: In response to a question on the r-help email list, the
following function (slightly edited here) was posted:

riffle <- function (a, b) {
Interleave a and b, starting with a, without repeating
x <- NULL
count <- 1
for (i in 1:max(length(a), length(b))) {
if (i <= length(a)) {
x[count] <- a[il
count <- count + 1
}
if (i <= length(b)) {
x[count] <- b[il
count <- count + 1

}

This function works as follows:

> riffle(1:10, 50:55)
[1] 150 251 352 453 554 655 7 8 9 10

Write a similar function but without using a loop. Try to measure which function is more
efficient for very large vectors. Can you improve the efficiency of the function employing the
loop without eliminating the loop? Which function is easier to understand?

3. Loop versus recursion: Named after a famous medieval Italian mathematician, Fibonacci num-
bers are an integer sequence F;, defined for n =1,2,... as

N = =1
F, = F,1+F, oforn>2

This definition leads straightforwardly to a recursive function to compute Fibonacci numbers;
write such as function, £ib0(n). Verify that your function works, as follows:

> sapply(1:10, £ib0)
[1] 112358 13 21 34 55

The largest Fibonnaci number that can be represented exactly as a double-precision floating-
point number (on most computers) is Frg = 8,944, 394,323,791, 464, but £ib0 would take a
very, very, very long time to compute this number. Let’s consider another approach to the
computation, which is to do it iteratively:

fibl <- function(n){

if (n <= 2) return(1)

last.minus.1 <- 1

last.minus.2 <- 1

for (i in 3:n){
save <- last.minus.1
last.minus.1 <- last.minus.l + last.minus.2
last.minus.2 <- save

}

last.minus.1

Compare the time required to compute £ib0(35) versus £ib1(35). Also check that £ib1(78)
gives you the right answer. To suppress scientific notation, you can set options(scipen=10).

Finally, although Fibonacci numbers are defined by the recurrence relation above, they may
also be computed directly by Binet’s formula, as

<1+2x/5)”

V5

F, =

where the square brackets represent rounding to the nearest integer. Because of rounding
errors on a computer using double-precision floating-point arithmetic, this result produces
an accurate answer only up to Frg = 190,392,490, 709, 135. Veryify that this is the case by
programming the formula as £ib2(n) and checking £ib1(70) and £ib1(71) versus £ib2(70)
and £ib2(71)

