
The R Statistical Computing Environment
Basics and Beyond

R Programming 1: Exercises

John Fox
(McMaster University)
ICPSR/Berkeley

2016

1. A simple programming problem: Write a function to compute running medians. Running me-
dians are a simple smoothing method usually applied to time-series. For example, for the
numbers 7, 5, 2, 8, 5, 5, 9, 4, 7, 8, the running medians of length 3 are 5, 5, 5, 5, 5, 5, 7, 7.
The �rst running median is the median of the three numbers 7, 5, and 2; the second running
median is the median of 5, 2, and 8; and so on. Your function should take two arguments:
the data (say, x), and the number of observations for each median (say, length). Notice that
there are fewer running medians than observations. How many fewer?

2. A slightly more challenging problem: In response to a question on the r-help email list, the
following function (slightly edited here) was posted:

riffle <- function (a, b) {
Interleave a and b, starting with a, without repeating
x <- NULL
count <- 1
for (i in 1:max(length(a), length(b))) {

if (i <= length(a)) {
x[count] <- a[i]
count <- count + 1

}
if (i <= length(b)) {

x[count] <- b[i]
count <- count + 1

}
}
x

}

This function works as follows:

> riffle(1:10, 50:55)
[1] 1 50 2 51 3 52 4 53 5 54 6 55 7 8 9 10

1

Write a similar function but without using a loop. Try to measure which function is more
e¢ cient for very large vectors. Can you improve the e¢ ciency of the function employing the
loop without eliminating the loop? Which function is easier to understand?

3. Loop versus recursion: Named after a famous medieval Italian mathematician, Fibonacci num-
bers are an integer sequence Fn de�ned for n = 1; 2; : : : as

F1 = F2 = 1

Fn = Fn�1 + Fn�2 for n > 2

This de�nition leads straightforwardly to a recursive function to compute Fibonacci numbers;
write such as function, fib0(n). Verify that your function works, as follows:

> sapply(1:10, fib0)
[1] 1 1 2 3 5 8 13 21 34 55

The largest Fibonnaci number that can be represented exactly as a double-precision �oating-
point number (on most computers) is F78 = 8; 944; 394; 323; 791; 464, but fib0 would take a
very, very, very long time to compute this number. Let�s consider another approach to the
computation, which is to do it iteratively:

fib1 <- function(n){
if (n <= 2) return(1)
last.minus.1 <- 1
last.minus.2 <- 1
for (i in 3:n){

save <- last.minus.1
last.minus.1 <- last.minus.1 + last.minus.2
last.minus.2 <- save

}
last.minus.1

}

Compare the time required to compute fib0(35) versus fib1(35). Also check that fib1(78)
gives you the right answer. To suppress scienti�c notation, you can set options(scipen=10).

Finally, although Fibonacci numbers are de�ned by the recurrence relation above, they may
also be computed directly by Binet�s formula, as

Fn =

24
�
1+
p
5

2

�n
p
5

35
where the square brackets represent rounding to the nearest integer. Because of rounding
errors on a computer using double-precision �oating-point arithmetic, this result produces
an accurate answer only up to F70 = 190; 392; 490; 709; 135. Veryify that this is the case by
programming the formula as fib2(n) and checking fib1(70) and fib1(71) versus fib2(70)
and fib2(71).

2

