The R Statistical Computing Environment
Basics and Beyond
R Programming: Exercises 3

John Fox
(McMaster University)
ICPSR /Berkeley

2016

1. Debugging Functions: A file with the bugged functions given below is available for download
from the course web site. Use the debugging tools in R and RStudio to locate and fix the
errors.

(a) If one of your own functions written for an earlier programming exercise still doesn’t work
properly, try to debug it.

(b) A function to calculate running medians (from problem 1 in Programming Exercises 1):

runningMedian <- function(x, length=3){ # bugged!
# X: a numeric vector
# length: the number of values for each running median, defaults to 3
n <- length(x)
X <- matrix(x, n, length)
for (i in 1:length) X[1:(n - i + 1), il <- x[-(1: (1 - 1))]
apply (X, 1, median)[1:(n - length + 1)]
}

(c) A bugged version of the fib1 function for computing Fibonnaci numbers (from problem 3 in
Programming Exercises 1):

fibl_bugged <- function(n){ # bugged!

if (n <= 2) return(l)

last.minus.1 <- 1

last.minus.2 <- 1

for (i in 3:n){
last.minus.1 <- last.minus.l + last.minus.2
last.minus.2 <- last.minus.1

}

last.minus.1



(d) A function to calculate logistic-regression estimates by iteratively reweighted least-squares
(from problem 2 in Programming Exercises 2) :

lregIWLS <- function(X, y, n=rep(l,length(y)), maxIter=10, tol=1E-6){ # bugged!
# X is the model matrix
# y is the response vector of observed proportion
# n is the vector of binomial counts
# maxIter is the maximum number of iterations
# tol is a convergence criterion
X <- cbind(1, X) # add constant
b <- bLast <- rep(0, ncol(X)) # initialize
it <- 1 # iteration index
while (it <= maxIter){
if (max(abs(b - bLast)/(abs(blast) + 0.01xtol)) < tol)
break
eta <- X %*% b
mu <- 1/(1 + exp(-eta))
nu <- as.vector(mu*(1 - mu))
w <- n*nu
z <- eta + (y - mu)/nu
b <- 1sfit(X, z, w, intercept=FALSE)$coef

bLast <- Db
it <- it + 1 # increment index
}

if (it > maxIter) warning(’maximum iterations exceeded’)
Vb <- solve(t(X) %*% diag(w) %x*% X)
list(coefficients=b, var=Vb, iterations=it)

3

2. Profiling Functions: Profile your recursive Fibonacci function £ib0 (from Problem 3 in Program-
ming Exercises 1) to figure out why it takes so long to compute large Fibonacci numbers.
Hard: Can you figure out how to improve the efficiency of the function dramatically while
still doing the computation recursively?



