1. Duncan, Haller, and Portes Peer-Influences Data

An example, from Duncan, Haller, and Portes’s (1968) study of peer influences on the aspirations of high-school students, appears in Figure 1.

The following conventions are used in the path diagram:

- A directed (single-headed) arrow represents a direct effect of one variable on another; each such arrow is labelled with a structural coefficient.
- A bidirectional (two-headed) arrow represents a covariance, between exogenous variables or between errors, that is not given causal interpretation.
- I give each variable in the model \((x, y, z)\) a unique subscript; I find that this helps to keep track of variables and coefficients.
1.1 Structural Equations

The structural equations of a model can be read straightforwardly from the path diagram.

- For example, for the Duncan, Haller, and Portes peer-influences model:

\[
\begin{align*}
y_{5i} &= \gamma_{50} + \gamma_{51}x_{1i} + \gamma_{52}x_{2i} + \beta_{56}y_{6i} + \varepsilon_{7i} \\
y_{6i} &= \gamma_{60} + \gamma_{63}x_{3i} + \gamma_{64}x_{4i} + \beta_{65}y_{5i} + \varepsilon_{8i}
\end{align*}
\]

- I’ll usually simplify the structural equations by
 (i) suppressing the subscript \(i\) for observation;
 (ii) expressing all \(x\)s and \(y\)s as deviations from their populations means
 (and, later, from their means in the sample).

- Putting variables in mean-deviation form gets rid of the constant terms
 (here, \(\gamma_{50}\) and \(\gamma_{60}\)) from the structural equations (which are rarely of interest), and will simplify some algebra later on.
• Applying these simplifications to the peer-influences model:

\[
\begin{align*}
y_5 &= \gamma_{51}x_1 + \gamma_{52}x_2 + \beta_{56}y_6 + \varepsilon_7 \\
y_6 &= \gamma_{63}x_3 + \gamma_{64}x_4 + \beta_{65}y_5 + \varepsilon_8
\end{align*}
\]

1.2 Estimation Using the sem Package in R

The `tsls` function in the `sem` package is used to estimate structural equations by 2SLS.

- The function works much like the `lm` function for fitting linear models by OLS, except that instrumental variables are specified in the `instruments` argument as a “one-sided” formula.
- For example, to fit the first equation in the Duncan, Haller, and Portes model, we would specify something like:

```r
eqn.1 <- tsls(ROccAsp ~ RIQ + RSES + FOccAsp,
               instruments= ~ RIQ + RSES + FSES + FIQ, data=DHP)
summary(eqn.1)
```

- This assumes that we have Duncan, Haller, and Portes’s data in the data frame `DHP`, which is not the case.

- `tsls` can also perform weighted 2SLS estimation.
The `sem` function may be used to fit a wide variety of models — including observed-variable nonrecursive models — by FIML.

The “data” for the model may be specified either in the form of a covariance matrix (or raw-moment matrix) or as case-by-variable data in the form of an R data frame; in either case, the first argument to `sem` is a description of the model to be fit.

For moment-matrix input, there are three required arguments:
- **model**: A coded formulation of the model, described below.
- **S**: The covariance matrix (or raw-moment matrix) among the observed variables in the model; may be in upper- or lower-triangular form as well as the full, symmetric matrix.
- **N**: The number of observations on which the moment matrix is based.
- In addition, for an observed-variable model, the argument `fixed.x` should be set to the names of the exogenous variables in the model.

If the original data set is available it is generally advantageous to use it; for example, it is then possible to obtain robust estimates of coefficient standard errors. For data-set input, there are two required arguments:
- **model**: As before.
- **data**: An R data frame containing the data from which the covariance or raw moment matrix of the observed variables is computed.
- In addition to `fixed.x`, there are two other arguments that are often useful:
 - **formula**: A one-sided R “model formula” to be applied to `data` to produce a numeric data matrix from which moments are computed; the default is `~ .`.
 - **raw**: If TRUE (the default depends upon context but is typically FALSE), a raw-moment matrix is used rather than a covariance matrix, permitting the estimation of regression intercepts.
- Additional arguments are available, e.g., to use alternative estimation criteria.
Internally, `sem` represents the model using a format called the “recticular-action model” (or RAM), which stems from an approach, due originally to McArdle, to specifying and estimating SEMs.

The RAM model can be specified directly using the `specifyModel` function in the `sem` package, which returns a model-specification object to be used as the first argument to `sem`:

- Each structural coefficient of the model is represented as a directed arrow `<->`.
- Each error variance and covariance is represented as a bidirectional arrow, `<->`, linking an endogenous variable to itself or two endogenous variables, though `specifyModel` will by default supply error variances automatically for the endogenous variables in the model if these aren’t given explicitly.

To write out the model in the form required by `specifyModel`, it helps to redraw the path diagram, as in Figure 2 for the Duncan, Haller, and Portes model.

Then the model can be encoded as follows, specifying each arrow, and giving a name to and start-value for the corresponding parameter (NA = let the program compute the start-value):

```r
model.DHP.1 <- specifyModel()
RIQ -> ROccAsp, gamma51, NA
RSES -> ROccAsp, gamma52, NA
FSES -> FOccAsp, gamma63, NA
FIQ -> FOccAsp, gamma64, NA
FOccAsp -> ROccAsp, beta56, NA
ROccAsp -> FOccAsp, beta65, NA
ROccAsp <-> ROccAsp, sigma77, NA
FOccAsp <-> FOccAsp, sigma88, NA
ROccAsp <-> FOccAsp, sigma78, NA
```
As mentioned, the error-variance parameters need not be given directly, and one can also omit the NAs for the start values, and so a more compact equivalent specification would be

```r
model.DHP.1 <- specifyModel()
RIQ -> ROccAsp, gamma51
RSES -> ROccAsp, gamma52
FSES -> FOccAsp, gamma63
FIQ -> FOccAsp, gamma64
FOccAsp -> ROccAsp, beta56
ROccAsp -> FOccAsp, beta65
ROccAsp <-> FOccAsp, sigma78
```
The `specifyEquations` function is often a more convenient and compact way to specify a structural equation model; for the current example:

```r
model.DHP.1 <- specifyEquations()
ROccAsp = gamma51*RIQ + gamma52*RSES + beta56*FOccAsp
FOccAsp = gamma64*FIQ + gamma63*FSES + beta65*ROccAsp
C(ROccAsp, FOccAsp) = sigma78
```

- Each term on the RHS of a structural equation is given in the form `coefficient*explanatoryVariable`.
- Error covariances are specified using `C()`.
- Error variances can be specified similarly using `V()`, but this is unnecessary here since `specifyEquations` supplies them by default.

- Parameter start values can optionally be given in parentheses after the parameter name; e.g., `beta56(0.5)*FOccAsp`.
- Fixed parameters can be specified using numeric constants; e.g. (not pertaining to the Duncan, Haller, and Portes data), `1*age`.
As was common when SEMs were first introduced to sociologists, Duncan, Haller, and Porter estimated their model for standardized variables.

- That is, the covariance matrix among the observed variables is a correlation matrix.
- The arguments for using standardized variables in a SEM are no more compelling than in a regression model.
 - In particular, it makes no sense to standardize dummy regressors, for example.

1.3 A Latent-Variable Model for the Peer-Influences Data

- A latent-variable model for Duncan, Haller, and Portes’s peer-influences data.
 - Measurement submodel:
 \[
 \begin{align*}
 y_1 &= \eta_1 + \varepsilon_1 \\
 y_2 &= \lambda_{11}\eta_1 + \varepsilon_2 \\
 y_3 &= \lambda_{21}\eta_2 + \varepsilon_3 \\
 y_4 &= \eta_2 + \varepsilon_4
 \end{align*}
 \]
 - Structural submodel:
 \[
 \begin{align*}
 \eta_1 &= \gamma_{11}x_1 + \gamma_{12}x_2 + \gamma_{13}x_3 + \beta_{12}\eta_2 + \zeta_1 \\
 \eta_2 &= \gamma_{24}x_4 + \gamma_{25}x_5 + \gamma_{26}x_6 + \beta_{21}\eta_1 + \zeta_2
 \end{align*}
 \]
The variables in the model are as follows:

- \(x_1 \): respondent’s parents’ aspirations
- \(x_2 \): respondent’s family IQ
- \(x_3 \): respondent’s SES
- \(x_4 \): best friend’s SES
- \(x_5 \): best friend’s family IQ
- \(x_6 \): best friend’s parents’ aspirations
- \(y_1 \): respondent’s occupational aspiration
- \(y_2 \): respondent’s educational aspiration
- \(y_3 \): best friend’s educational aspiration
- \(y_4 \): best friend’s occupational aspiration
- \(\eta_1 \): respondent’s general aspirations
- \(\eta_2 \): best friend’s general aspirations

In this model, the exogenous variables are specified to be measured without error, while the latent endogenous variables each have two fallible indicators.

We can specify this model for \texttt{sem} as follows:

```r
model.dhp.2 <- specifyEquations(covs="RGenAsp, FGenAsp")
RGenAsp = gam11*RParAsp + gam12*RIQ + gam13*RSES
+ gam14*FSES + beta12*FGenAsp
FGenAsp = gam23*RSES + gam24*FSES + gam25*FIQ
+ gam26*FParAsp + beta21*RGenAsp
ROccAsp = 1*RGenAsp
REdAsp = lam21*RGenAsp
FOccAsp = 1*FGenAsp
FEdAsp = lam42*FGenAsp
```

\texttt{sem} assumes that variables that do not appear in the data (here, \texttt{RGenAsp} and \texttt{FGenAsp}) are latent variables.
The argument `covs="RGenAsp, FGenAsp"` to `specifyEquations` includes error variance and covariance parameters for the two latent endogenous variables, and is an alternative to using the `C()` and `V()` operators.

Because `RParAsp, RIQ, RSES, FSES, FIQ,` and `FParAsp` are directly observed exogenous variables, these should be specified in the `fixed.x` argument to `sem`.

2. A Confirmatory-Factor-Analysis Model

The latent-variable structural equation model is very general, and special cases of it correspond to a variety of statistical models.

For example, if there are only exogenous latent variables and their indicators, the model specializes to the confirmatory-factor-analysis (CFA) model, which seeks to account for the covariational structure of a set of observed variables in terms of a smaller number of factors.

The path diagram for an illustrative CFA model appears in Figure 3.

- The data for this example are taken from Harman’s classic factor-analysis text.
- Harman attributes the data to Holzinger, an important figure in the development of factor analysis (and intelligence testing).
The first three tests (Word Meaning, Sentence Completion, and Odd Words) are meant to tap a verbal factor; the next three (Mixed Arithmetic, Remainders, Missing Numbers) an arithmetic factor, and the last three (Gloves, Boots, Hatchets) a spatial-relations factor.

The model permits the three factors to be correlated with one-another.

The normalizations employed in this model set the variances of the factors to 1; the covariances of the factors are then the factor intercorrelations.
This model can be conveniently specified using the `cfa` function in the
`sem` package:

```r
model.Holzinger.2 <- cfa(reference.indicators=FALSE)
Verbal: Word.meaning, Sentence.completion, Odd.words
Arithmetic: Mixed.arithmetic, Remainders, Missing.numbers
Spatial: Gloves, Boots, Hatchets
```

- Each factor is given a name, followed by a colon and the names of the
 observed variables loading on that factor.
- The argument `reference.indicators=FALSE` sets the factor
 variances to 1 rather than the loading of the first indicator for each
 factor to 1.

By default, the factors are assumed to be correlated, and their
pairwise correlations (or covariances) are free parameters to be
estimated from the data; including the argument `covs=NULL` would
specify uncorrelated (“orthogonal”) factors.

Estimates for this model, and for an alternative CFA model specifying
uncorrelated factors, are given in the computer examples.
3. Other Capabilities of the sem Package*

- Robust standard errors and test statistics.
- FIML estimates in the presence of missing data.
- Multiple imputation of missing data, using the mi package.
- Ordinal indicators and bootstrapped standard errors.
- Multiple-group SEMs.
- Alternative estimation criteria (objective functions).
- Alternative optimizers.

*Many to be illustrated as time permits.