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Linear Models in R
Review of Dummy-Variable Regression

Defining a dummy-variable regressor for a
dichotomous explanatory variable — e.g.,
gender in the regression of income Y on
gender and education X .

Let D = 0 for women and D = 1 for men.

Then the additive dummy-regression
model is

Y = α + βX + γD + ε

So, for women (treating X as
conditionally fixed)

Y = α + βX + γ× 0 + ε

E (Y ) = α + βX

And, for men
Y = α + βX + γ× 1 + ε

E (Y ) = (α + γ) + βX

X

Y

0

α

α + γ

γ
1

β

1

β

D = 1

D = 0

In R notation with data in Data:
model <- lm(income ∼ education

+ gender, data=Data).
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Linear Models in R
Review of Dummy-Variable Regression

Different slopes for women and men
(“different slopes for different folks”) can
be modelled by introducing an interaction
regressor, the product of X and D, into
the model:

Y = α + βX + γD + δ(X ×D) + ε

Then, for women

Y = α + βX + γ× 0 + δ(X × 0) + ε

E (Y ) = α + βX

And, for men

Y = α + βX + γ× 1 + δ(X × 1) + ε

E (Y ) = (α + γ) + (β + δ)X

X

Y

0

α

α + γ
1

β

1

β + δ

D = 1

D = 0

In R (compact) notation:
model <- lm (income ∼
education*gender, data=Data).
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Linear Models in R
Review of Dummy-Variable Regression

Polytomous explanatory variables—i.e., factors with more than two levels—are handled by
creating a set of dummy regressors, one fewer than the number of levels.

For example, for gender with levels female, male, and nonbinary, we can code two dummy
regressors:

Gender D1 D2

female 0 0
male 1 0
nonbinary 0 1
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Linear Models in R
Review of Dummy-Variable Regression

Then we can fit the model

Y = α + βX + γ1D1 + γ2D3 + δ1(X ×D1) + δ2(X ×D2) + ε

and

female : E (Y ) = α + βX + γ1 × 0 + γ2 × 0 + δ1(X × 0) + δ2(X × 0)

= α + βX

male : E (Y ) = α + βX + γ1 × 1 + γ2 × 0 + δ1(X × 1) + δ2(X × 0)

= (α + γ1) + (β + δ1)X

nonbinary : E (Y ) = α + βX + γ1 × 0 + γ2 × 1 + δ1(X × 0) + δ2(X × 1)

= (α + γ2) + (β + δ2)X
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Linear Models in R
Type-II Tests for Linear (and Other) Models

Type II tests are constructed in conformity to the principle of marginality: Each term in
the model is tested assuming that its higher-order relatives are zero (and hence are
ignored).

Thus, a main effect (e.g., X) is tested assuming that the interaction or interactions to
which the main effect is marginal (e.g., X:A, X:A:B) are zero.

For example, consider the model y ∼ a*b*c or in longer form
y ∼ 1 + a + b + c + a:b + a:c + b:c + a:b:c.
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Linear Models in R
Type-II Tests for Linear (and Other) Models

For Type-II tests of all terms, we implicitly fit the following models (all in longer form):

Model Formula
1 y ∼ 1 + a + b + c + a:b + a:c + b:c + a:b:c

2 y ∼ 1 + a + b + c + a:b + a:c + b:c

3 y ∼ 1 + a + b + c + a:c + b:c

4 y ∼ 1 + a + b + c + a:b + b:c

5 y ∼ 1 + a + b + c + a:b + a:c

6 y ∼ 1 + a + b + c + b:c

7 y ∼ 1 + b + c + b:c

8 y ∼ 1 + a + b + c + a:c

9 y ∼ 1 + a + c + a:c

10 y ∼ 1 + a + b + c + a:b

11 y ∼ 1 + a + b + a:b
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Linear Models in R
Type-II Tests for Linear (and Other) Models

Contrasting pairs of models by subtracting the regression sum of squares for the smaller
model from that for the larger model produces the Type-II ANOVA table:

Term Models Contrasted
a 6− 7
b 8− 9
c 10− 11

a:b 2− 3
a:c 2− 4
b:c 2− 5
a:b:c 1− 2

The degrees of freedom for each term are the number of regressors used for that term.
The estimated error variance used for the denominator of the F -tests comes from the
largest model fit to the data, here Model 1, and the denominator degrees of freedom for
F are the residual degrees of freedom for this model.
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Linear Models in R
Arguments of the lm() Function

lm(formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

Operators for the formula argument:

Expression Interpretation Example

A + B include both A and B income + education

A - B exclude B from A a*b*d - a:b:d

A:B interaction of A and B type:education

A*B A + B + A:B type*education

B %in% A B nested within A education %in% type

A/B A + B %in% A type/education

A^k effects crossed to order k (a + b + d)^2
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Linear Models in R
Arguments of the lm() Function

data: A data frame containing the data for the model.

subset:

a logical vector: subset = gender == "F"

a numeric vector of observation indices: subset = 1:100

a negative numeric vector with observations to be omitted: subset = -c(6, 16)

weights: for weighted-least-squares regression

na.action: name of a function to handle missing data; default given by the na.action

option, initially "na.omit"

method, model, x, y, qr, singular.ok: technical arguments

contrasts: specify a list of contrasts for factors; e.g.,
contrasts=list(partner.status=contr.sum, fcategory=contr.poly))

offset: term added to the right-hand-side of the model with a fixed coefficient of 1.
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Linear Models in R
Regression Diagnostics: Unusual Cases

Influence on the regression coefficients = leverage× outlyingness.

Hat-values measure leverage.

The fitted linear regression model in matrix form is y = Xb + e, where y is the (n× 1)
response vector, X is the (n× p) model matrix, and b = (XTX)−1XT y is the (p × 1) vector
of least squares coefficients.
The fitted values are then ŷ = Xb = X(XTX)−1XT y = Hy, where the (n× n) hat-matrix is
H = X(XTX)−1XT .

The hij element of H gives the weight of Yj in determining Ŷi .

The H matrix is symmetric (H = HT ) and idempotent (H2 = H), and it follows that the jth
diagonal element of H, hj = hjj = ∑n

i=1 h
2
ij summarizes the size of all of the elements in the

jth column of of H and hence the leverage of the jth case in determining the fit.
The diagonal entries hj of H are the hat-values.
The hat-values are bounded between 1/n (if the model has an intercept, otherwise 0) and 1,
and the average hat-values is h = p/n.

John Fox (McMaster University) R Statistical Computing Environment ICPSR 2021 13 / 48

Linear Models in R
Regression Diagnostics: Unusual Cases

Studentized residuals measure outlyingness.

The studentized residuals are

ETi =
Ei

SE (−i)
√

1− hi

where Ei is the ith element of the least-squares residuals vector e and SE (−i) is the standard
deviation of the residuals when the regression is refit with the ith case removed.
If the model is correct, then each studentized residual is distributed at t with n− p − 1
degrees of freedom, providing a basis for an outlier test based on the the largest absolute
studentized residual.
But because there are n studentized residuals, it’s necessary to correct for simultaneous
statistical inference—e.g., a Bonferroni correction, which multiplies the two-sided P-value for
the t-test by n.
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Linear Models in R
Regression Diagnostics: Unusual Cases

Measuring influence on the regression coefficients with dfbeta and Cook’s D:

The most direct measure is to refit the model without the ith case and see how the
coefficients change.
The answer is dfbetai = b− b(−i) = (XTX)−1xiEi/(1− hi ), where b(−i) is the vector of
least-squares coefficients computed with the ith case deleted, and xi is the ith row of X
(written as a column vector).
Because there are a lot (n× p) of dfbetaij , it’s useful to summarize the p values for each
case i . The most common such measure is Cook’s distance:

Di =
dfbetaTi XTX dfbetai

pS2
E

=
(ŷ− ŷ(−i))

T (ŷ− ŷ(−i))

pS2
E

≈
E2
Ti

p
× hi

1− hi

= outlyingness× leverage

where ŷ(−i) is the vector of fitted values computed when the ith case is removed.
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Linear Models in R
Regression Diagnostics: Added-Variable (AV) Plots

Added-variable plots visualize leverage, outlyingness, and influence on each regression
coefficient, reducing the p-dimensional scatterplot of the data to a series of p
two-dimensional scatterplots, one for each coefficient.

For example, focusing on the coefficient B1 of X1 in the regression
Y = A+ B1X1 + B2X2 + · · ·+ BkXk + E (so p = k + 1):

Regress Y on X2, . . . ,Xk (and an intercept), obtaining residuals E (Y1) (i.e., what remains of
Y when the effects of X2, . . . ,Xk are removed).

Regress X1 on X2, . . . ,Xk (and an intercept), obtaining residuals E (X1) (i.e., what remains of
X1 when the effects of X2, . . . ,Xk are removed).

plot E (Y1) versus E (X1).

Repeat for each of X2, . . . ,Xk (and even, if desired, for the constant regressor, X0 = 1).
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Linear Models in R
Regression Diagnostics: Added-Variable (AV) Plots

The AV plot for Xj has the following remarkable properties:

The slope of the least-squares line in the plot is the coefficient Bj of Xj in the multiple
regression.
The residuals from this line are the same as the residuals Ei in the multiple regression.
The horizontal variation of Xj in the plot is its conditional variation holding the other X s

constant: S2
Xj |other X s = ∑E (Xj )

2
/(n− k).

Consequently, the standard error of Bj computed from the simple regression corresponding to

the plot, SE(Bj ) = SE/
√

∑E (Xj )2 is the same as the standard error of Bj from the multiple
regression.
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Linear Models in R
Regression Diagnostics: Component-Plus-Residuals (C+R) Plots

Component-plus-Residuals plots are even a simpler way of reducing the p-dimensional
scatterplot to a series of 2D plots:

Add the residuals from the full regression to the linear component representing X1 to form
the partial residuals: E (1) = B1X1 + E .
Plot E (1) versus X1, enhancing the graph with a scatterplot smoother (nonparametric
regression line) to judge nonlinearity.

By construction, the least-squares slope of the C+R plot for X1 is B1 from the multiple
regression, and the residuals in the C+R plot are just the E s.

Under certain reasonably general (but not bulletproof) circumstances, if the partial
relationship between Y and X1 is nonlinear but incorrectly modelled as linear, the nature
of the nonlinearity will be apparent in the C+R plot for X1.

Repeat for each of X2, . . . ,Xk .
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Linear Models in R
The Bulging Rule for Linearizing a Relationship

It’s often possible to linearize a nonlinear relationship between Y and X by transforming
one or the other (or both) by a power transformation.

By power transformations, I mean X → X p or similarly for Y .

The power p may be positive or negative, and need not be a whole number.
For example, X 1/2 =

√
X and X−1 = 1/X .

p = 1 is no transformation: X 1 = X .
If p = 0, we use log(X ).
Following John Tukey, we say that p > 1 (e.g., X 2, X 3) is a transformation “up the ladder
of powers” and p < 1 (e.g., X 1/2, log(X ), 1/X ) is “down the ladder of powers.”
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Linear Models in R
The Bulging Rule for Linearizing a Relationship

This approach works if
1 The values of the variable to be

transformed are all positive.
2 The relationship between the variables is

monotone (strictly increasing or
decreasing).

3 The relationship is simple, in the sense
that the direction of curvature doesn’t
change.

4 There are then only four patterns,
summarized by Mosteller and Tukey’s
bulging rule:

X up:

X2,  X3

X down:

log(X),  X

Y up:
Y2
Y3

Y down:
Y

log(Y)
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Generalized Linear Models in R
Review of the Structure of GLMs

A generalized linear model consists of three components:

1 A random component, specifying the conditional distribution of the response variable, Yi ,
given the predictors. Traditionally, the random component is an exponential family — the
normal (Gaussian), binomial, Poisson, gamma, or inverse-Gaussian.

2 A linear function of the regressors, called the linear predictor,

ηi = α + β1Xi1 + · · ·+ βkXik

on which the expected value µi of Yi depends.

3 A link function g(µi ) = ηi , which transforms the expectation of the response to the linear
predictor. The inverse of the link function is called the mean function: g−1(ηi ) = µi .
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Generalized Linear Models in R
Review of the Structure of GLMs

In the following table, the logit, probit and complementary log-log links are for binomial
or binary data:

Link ηi = g(µi ) µi = g−1(ηi )
identity µi ηi

log loge µi eηi

inverse µ−1i η−1i

inverse-square µ−2i η−1/2
i

square-root
√

µi η2
i

logit loge
µi

1− µi

1

1 + e−ηi

probit Φ(µi ) Φ−1(ηi )
complementary log-log loge [− loge(1− µi )] 1− exp[− exp(ηi )]
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Generalized Linear Models in R
Implementation of GLMs in R: The glm() Function

Generalized linear models are fit with the glm() function. Most of the arguments of
glm() are similar to those of lm():

The response variable and regressors are given in a model formula.
data, subset, and na.action arguments determine the data on which the model is fit.
The additional family argument is used to specify a family-generator function, which may
take other arguments, such as a link function.
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Generalized Linear Models in R
Implementation of GLMs in R: The glm() Function

The following table gives family generators and default links:

Family Default Link Range of Yi V (Yi |ηi )
gaussian identity (−∞,+∞) φ

binomial logit
0, 1, ..., ni

ni
µi (1− µi )

poisson log 0, 1, 2, ... µi

Gamma inverse (0, ∞) φµ2
i

inverse.gaussian 1/mu^2 (0, ∞) φµ3
i

For distributions in the exponential families, the variance is a function of the mean and a
dispersion parameter φ (fixed to 1 for the binomial and Poisson distributions).

John Fox (McMaster University) R Statistical Computing Environment ICPSR 2021 25 / 48

Generalized Linear Models in R
Implementation of GLMs in R: The glm() Function

The following table shows the links available (X) for each family in R, with the default
link marked by F:

link

family identity inverse sqrt 1/mu^2 log logit probit cloglog

gaussian F X X
binomial X F X X
poisson X X F
Gamma X F X
inverse.gaussian X X F X
quasi F X X X X X X X
quasibinomial F X X
quasipoisson X X F

The quasi, quasibinomial, and quasipoisson family generators do not correspond to
exponential families.
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Generalized Linear Models in R
GLMs for Binary/Binomial

The response for a binomial GLM may be specified in several forms:

For binary data, the response may be

a variable or an R expression that evaluates to 0s (‘failure’) and 1s (‘success’).
a logical variable or expression, such as voted == "yes" (with TRUE representing success, and
FALSE failure).
a factor (in which case the first category is taken to represent failure and the others success).

For binomial data, the response may be

a two-column matrix, with the first column giving the count of successes and the second the
count of failures for each binomial observation.
a vector giving the proportion of successes, while the binomial denominators (total counts or
numbers of trials) are given by the weights argument to glm().
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Generalized Linear Models in R
GLMs for Count Data and Polytomous Data

Poisson generalized linear models are commonly used when the response variable is a
count (Poisson regression) and for modeling associations in contingency tables (loglinear
models). The two applications are formally equivalent.

Poisson GLMs are fit in R using the poisson family generator with glm().

Overdispersed binomial and Poisson models may be fit via the quasibinomial and
quasipoisson families.

The glm.nb() function in the MASS package fits negative-binomial GLMs to count data.

The multinom() function in the nnet package fits multinomial GLMs for nominal
polytomous responses.

The polr() function in the MASS package fits the proportional-odds logit model and
the ordered probit model to ordinal polytomous responses.

The clm() function in the ordinal package fits a variety of models (including the
proportional-odds model) to ordinal polytomous responses.
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The Linear Mixed-Effects Model

The Laird-Ware form of the linear mixed model:

Yij = β1 + β2X2ij + · · ·+ βpXpij + B1iZ1ij + · · ·+ BqiZqij + ε ij

Bki ∼ N(0, ψ2
k), Cov(Bki ,Bk ′i ) = ψkk ′

Bki ,Bk ′i ′ are independent for i 6= i ′

ε ij ∼ N(0, σ2λijj ), Cov(ε ij , ε ij ′) = σ2λijj ′

ε ij , ε i ′j ′ are independent for i 6= i ′
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The Linear Mixed-Effects Model

where:

Yij is the value of the response variable for the jth of ni observations in the ith of m groups
or clusters.
β1, β2, . . . , βp are the fixed-effect coefficients, which are identical for all groups.
X2ij , . . . ,Xpij are the fixed-effect regressors for observation j in group i ; there is also
implicitly a constant regressor, X1ij = 1.
B1i , . . . ,Bqi are the random-effect coefficients for group i , assumed to be multivariately
normally distributed, independent of the random effects of other groups. The random effects,
therefore, vary by group.

The Bik are thought of as random variables, not as parameters, and are similar in this respect
to the errors εij .

Z1ij , . . . ,Zqij are the random-effect regressors.

The Z s are almost always a subset of the X s (and may include all of the X s).
When there is a random intercept term, Z1ij = 1.
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The Linear Mixed-Effects Model

The remaining parameters specify the variance-covariance components (don’t get lost!):

ψ2
k are the variances and ψkk ′ the covariances among the random effects, assumed to be

constant across groups.

In some applications, the ψs are parametrized in terms of a smaller number of fundamental
parameters.

εij is the error for observation j in group i .

The errors for group i are assumed to be multivariately normally distributed, and independent
of errors in other groups.

σ2λijj ′ are the covariances between errors in group i .

Generally, the λijj ′ are parametrized in terms of a few basic parameters, and their specific form
depends upon context.
When observations are sampled independently within groups and are assumed to have constant
error variance (as is typical in hierarchical models), λijj = 1, λijj ′ = 0 (for j 6= j ′), and thus the

only free parameter to estimate is the common error variance, σ2.
If the observations in a “group” represent longitudinal data on a single individual, then the
structure of the λs may be specified to capture serial (i.e., over-time) dependencies among the
errors.
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Fitting Mixed Models in R
with the nlme and lme4 packages

In the nlme package (Pinheiro, Bates, DebRoy, and Sarkar):

lme(): linear mixed-effects models with nested random effects; can model serially correlated
errors.
nlme(): nonlinear mixed-effects models.

In the lme4 package (Bates, Maechler, Bolker, and Walker):

lmer(): linear mixed-effects models with nested or crossed random effects; no facility (yet)
for serially correlated errors.
glmer(): generalized-linear mixed-effects models.

There are many other CRAN packages that fit a variety of mixed-effects models, perhaps
most notably glmmTMB
(see https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html).

There are also Bayesian approaches to modeling hierarchical and longitudinal data that
offer certain advantages; see in particular the rstan, rstanarm, and blme packages.
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A Mixed Model for the Blackmore Exercise Data
Longitudinal Model

A level-1 model specifying a linear “growth curve” for log exercise for each subject:

log -exerciseij = α0i + α1i (ageij − 8) + ε ij

Our interest in detecting differences in exercise histories between subjects and controls
suggests the level-2 model

α0i = γ00 + γ01groupi + ω0i

α1i = γ10 + γ11groupi + ω1i

where group is a dummy variable coded 1 for subjects and 0 for controls.
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A Mixed Model for the Blackmore Exercise Data
Laird-Ware form of the Model

Substituting the level-2 model into the level-1 model produces

log -exerciseij = (γ00 + γ01groupi + ω0i ) + (γ10 + γ11groupi + ω1i )(ageij − 8) + ε ij

= γ00 + γ01groupi + γ10(ageij − 8) + γ11groupi × (ageij − 8)

+ ω0i + ω1i (ageij − 8) + ε ij

in Laird-Ware form,

Yij = β1 + β2X2ij + β3X3ij + β4X4ij + δ1i + δ2iZ2ij + ε ij

Continuous first-order autoregressive process for the errors:

Cor(ε it , ε i ,t+s) = ρ(s) = φ|s |

where the time-interval between observations, s, need not be an integer.
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A Mixed Model for the Blackmore Exercise Data
Specifying the Model in lme() and lmer()

Using lme() in the nlme package:

lme(log.exercise ∼ I(age - 8)*group,

random = ∼ I(age - 8) | subject,

correlation = corCAR1(form = ∼ age |subject)

data=Blackmoore)

Using lmer() in the lme4 package, but without autocorrelated errors:

lmer(log.exercise ∼ I(age - 8)*group + (I(age - 8) | subject),

data=Blackmoore)
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Using the Tidyverse for Data Management
Overview of the Tidyverse

The “Tidyverse” is an integrated set of R packages developed by Hadley Wickham and
his collaborators at RStudio (see https://www.tidyverse.org/).

The packages are meant to provide a straightforward way to import data into R and to
manipulate the data.

There are also Tidyverse tools for R programming and statistical graphics.

A central goal of the data-oriented Tidyverse packages is to construct, modify, and
maintain “tidy data”—rectangular data sets in which the rows represent cases and the
columns represent variables.

Of course, the idea of a rectangular data set greatly antedates the Tidyverse and is
incorporated in the standard R data frame.
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https://www.tidyverse.org/


Using the Tidyverse for Data Management
Core Tidyverse Packages

There are eight “core” Tidyverse packages, which can be installed and loaded via the
master tidyverse package:

1 readr: Imports rectangular data sets from plain-text files.
2 tibble: The specific implementation of rectangular data sets in the Tidyverse is called a

“tibble,” and tibble objects inherit from the "data.frame" class.
3 tidyr: Provides functions to create and maintain rectangular data sets (e.g., to transform

rectangular data sets between “wide” and “long” form).
4 dplyr: Provides functions for data manipulation (e.g., adding variables to an existing data

set).
5 stringr: Provides functions for manipulating text (character-string) data (e.g., searching for

text).
6 forcats: Provides functions for manipulating R factors (e.g., changing the order of levels of a

factor).
7 purrr: Provides R programming tools (e.g., alternatives to iteration).
8 ggplot2: A comprehensive alternative graphics system for R (to be discussed when we take

up R graphics, and a package that is slightly out-of-place in the Tidyverse).
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Using the Tidyverse for Data Management
Other Tidyverse Packages

There are other Tidyverse packages, which can be installed and loaded separately, most
notably:

haven: Imports data from other statistical packages.
readxl: Imports data from Excel files.
lubridate: For working with dates.
magrittr: The style of data manipulation encouraged by the developers of the Tidyverse
makes extensive use of the “pipe” operator, %>%, which is provided by the magritr package.

magrittr also includes some other programming-oriented functions.
The pipe operator is supplied by several of the core Tidyverse packages.
Pipes can be used with standard R functions.
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Using the Tidyverse for Data Management
Should You Commit to the Tidyverse?

There are few, if any, Tidyverse functions that don’t have close analogs in the standard R
distribution, but the Tidyverse functions are more uniform and many people claim that
they are easier to use (possibly because they’re unfamiliar with standard R).

There are hundreds of functions in the core Tidyverse packages. It isn’t obvious that it’s
easier to learn the Tidyverse than to learn standard R.

There are both advantages and disadvantages to Tidyverse implementations of ideas.

For example, the print() method for tibbles is nicer than that for data frames (cf., the
brief() function in the car package), but tibbles don’t support row names.

Tidyverse tools often don’t play well with non-Tidyverse tools.

For example, the data.table package implements a data frame alternative that is superior to
tibbles for large data sets, but data.tables aren’t well supported by Tidyverse functions.
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Using the Tidyverse for Data Management
Should You Commit to the Tidyverse?

R is a programming language, and in many cases the simplest and most direct solution to
a problem is to write a program.

Using the Tidyverse tools effectively requires some programming skills, and a beginner’s time
might be better spent learning more general basic R programming.

For an interesting general critique of the Tidyverse (with which I don’t entirely agree), see
an essay by Norm Matloff at https://github.com/matloff/TidyverseSkeptic.
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R Programming
MLE Estimation of the Binary Logit Models by Newton-Raphson

The binary logit model is

Pr(Yi = 1) = φi =
1

1 + exp(−xTi β)

where

X is the model matrix, with xTi as its ith row;
y is the response vector (containing 0s and 1s) with Yi as its ith element;
β is the vector of logistic-regression parameters.
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R Programming
MLE Estimation of the Binary Logit Models by Newton-Raphson

The log-likelihood for the model is

loge L(β) = ∑ yi loge φi + (1− yi ) loge (1− φi )

The gradient (the vector of partial derivatives) of the log-likelihood with respect to the
parameters is

∂ loge L

∂β
= ∑(yi − φi )xi

The Hessian (the matrix of second-order partial derivatives) of the log-likelihood is

∂ loge L

∂β∂βT
= XTVX

where V = diag{φi (1− φi )}. The variance-covariance matrix of the estimated regression
coefficients is the inverse of the Hessian.
Setting the gradient to 0 produces nonlinear estimating equations for β, which have to be
solved iteratively, possibly using the information in the Hessian.
John Fox (McMaster University) R Statistical Computing Environment ICPSR 2021 45 / 48

R Programming
MLE Estimation of the Binary Logit Models by Newton-Raphson

Newton-Raphson is a general method for solving nonlinear equations iteratively.

Here:
1 Choose initial estimates of the regression coefficients, such as b0 = 0.
2 At each iteration t, update the coefficients:

bt = bt−1 + (XTVt−1X)−1XT (y− pt−1)

where

pt−1 = {1/[1 + exp(−xTi bt−1)]} is the vector of fitted response probabilities from the
previous iteration.
Vt−1 = diag{pi ,t−1(1− pi ,t−1)}.

3 Step 2 is repeated until bt is close enough to bt−1, at which point the MLE β̂ ≈ bt . The

estimated asymptotic covariance matrix of the coefficients is given by V̂ (β̂) ≈ (XTVtX)−1.
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R Programming
Object-Oriented Programming in R: The S3 Object System

Three standard object-oriented programming systems in R: S3, S4, reference classes. Of
these, the S3 object system is the one most commonly used in applications.

How the S3 object system works:
Method dispatch of the generic function generic() for the object named object, which is
of of class "class" (where ⇒ means “the interpreter looks for and dispatches”):
generic(object) ⇒ generic.class(object) ⇒ generic.default(object)

For example, summarizing an object mod of class "lm":
summary(mod) ⇒ summary.lm(mod)

Objects can have more than one class, in which case the first applicable method is used.
For example, objects produced by glm() are of class c("glm", "lm") and therefore can
inherit methods from class "lm".
Methods are searched from left to right, so if mod is produced by a call to glm(), and if
generic(mod) is called, then methods are invoked in the order
generic(mod) ⇒ generic.glm(mod) ⇒ generic.lm(mod) ⇒
generic.default(mod)
and will fail if none of these three methods are available.
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R Programming
Object-Oriented Programming in R: The S3 Object System

Generic functions take the form:

generic <- function(object, other, named, arguments, ...){
UseMethod("generic")

}
where the ellipses (...) “soak up” additional arguments not named in the generic
function that may be passed to specific methods when generic() is called.

For example, the R summary() function is defined as

summary <- function(object, ...){
UseMethod("summary")

}
and summary.lm() is

summary.lm <- function (object, correlation=FALSE, symbolic.cor=FALSE, ...){
etc.

}
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