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1. Topics
I The structure of generalized linear models

I Poisson and other generalized linear models for count data

I Diagnostics for generalized linear models (as time permits)

I Logit and Loglinear models for contingency tables (as time permits)

I Implementation of generalized linear models in R
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2. The Structure of Generalized Linear
Models
I A synthesis due to Nelder and Wedderburn, generalized linear models

(GLMs) extend the range of application of linear statistical models
by accommodating response variables with non-normal conditional
distributions.

I Except for the error, the right-hand side of a generalized linear model is
essentially the same as for a linear model.
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I A generalized linear model consists of three components:

1. A random component, specifying the conditional distribution of the
response variable, , given the explanatory variables.
• Traditionally, the random component is a member of an “exponential

family” — the normal (Gaussian), binomial, Poisson, gamma, or
inverse-Gaussian families of distributions — but generalized linear
models have been extended beyond the exponential families.

• The Gaussian and binomial distributions are familiar.

• Poisson distributions are often used in modeling count data. Poisson
random variables take on non-negative integer values, 0 1 2   .
Some examples are shown in Figure 1.
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Figure 1. Poisson distributions for various values of the “rate” parameter
(mean) .
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• The gamma and inverse-Gaussian distributions are for positive
continuous data; some examples are given in Figure 2.

2. A linear function of the regressors, called the linear predictor,
 =  + 11 + · · · +  = x

0
β

on which the expected value  of  depends.
• The  ’s may include quantitative predictors, but they may also include

transformations of predictors, polynomial terms, contrasts generated
from factors, interaction regressors, etc.

3. An invertible link function () = , which transforms the expectation
of the response to the linear predictor.
• The inverse of the link function is sometimes called the mean function:
−1() = .
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Figure 2. (a) Several gamma distributions for “scale”  = 1 and various
values of the “shape” parameter . (b) Inverse-Gaussian distributions for
several combinations of values of the mean  and “inverse-dispersion” .
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• Standard link functions and their inverses are shown in the following
table:

Link  = ()  = −1()
identity  
log log  

inverse −1 −1
inverse-square −2 

−12


square-root
√
 2

logit log


1− 

1

1 + −
probit Φ−1() Φ()

log-log − log[− log()] exp[− exp(−)]
complementary log-log log[− log(1− )] 1− exp[− exp()]

• The logit, probit, and complementary-log-log links are for binomial
data, where  represents the observed proportion and  the
expected proportion of “successes” in  binomial trials — that is,  is
the probability of a success.
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· For the probit link, Φ is the standard-normal cumulative distribution
function, and Φ−1 is the standard-normal quantile function.

· An important special case is binary data, where all of the binomial
trials are 1, and therefore all of the observed proportions  are
either 0 or 1. This is the case that we examined in the previous
session.

I Although the logit and probit links are familiar, the log-log and comple-
mentary log-log links for binomial data are not.
• These links are compared in Figure 3.

• The log-log or complementary log-log link may be appropriate when
the probability of the response as a function of the linear predictor
approaches 0 and 1 asymmetrically.
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Figure 3. Comparison of logit, probit, and complementary log-log links.
The probit link is rescaled to match the variance of the logistic distribution,
23.
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I For distributions in the exponential families, the conditional variance of
 is a function of the mean  together with a dispersion parameter  (as
shown in the table below).
• For the binomial and Poisson distributions, the dispersion parameter

is fixed to 1.

• For the Gaussian distribution, the dispersion parameter is the usual
error variance, which we previously symbolized by 2 (and which
doesn’t depend on ).

Family Canonical Link Range of   (|)
Gaussian identity (−∞+∞) 

binomial logit
0 1  



(1− )


Poisson log 0 1 2  
gamma inverse (0∞) 2
inverse-Gaussian inverse-square (0∞) 3
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I The canonical link for each familiy is not only the one most commonly
used, but also arises naturally from the general formula for distributions
in the exponential families.
• Other links may be more appropriate for the specific problem at hand

• One of the strengths of the GLM paradigm — in contrast, for example,
to transformation of the response variable in a linear model — is the
separation of the link function from the conditional distribution of the
response.

I GLMs are typically fit to data by the method of maximum likelihood.
• Denote the maximum-likelihood estimates of the regression parame-

ters as b b1  b.
· These imply an estimate of the mean of the response, b =
−1(b + b11 + · · · + b).
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• The log-likelihood for the model, maximized over the regression
coefficients, is

log 0 =

X
=1

log (b ; )
where (·) is the probability or probability-density function correspond-
ing to the family employed.

• A “saturated” model, which dedicates one parameter to each observa-
tion, and hence fits the data perfectly, has log-likelihood

log 1 =

X
=1

log ( ; )

• Twice the difference between these log-likelihoods defines the residual
deviance under the model, a generalization of the residual sum of
squares for linear models:

(y; bμ) = 2(log 1 − log 0)
where y = {} and bμ = {b}.
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• Dividing the deviance by the estimated dispersion produces the scaled
deviance: (y; bμ)b.

• Likelihood-ratio tests can be formulated by taking differences in the
residual deviance for nested models.

• For models with an estimated dispersion parameter, one can alterna-
tively use incremental  -tests.

• Wald tests for individual coefficients are formulated using the estimated
asymptotic standard errors of the coefficients.

I Some familiar examples:
• Combining the identity link with the Gaussian family produces the

normal linear model.
· The maximum-likelihood estimates for this model are the ordinary

least-squares estimates.

• Combining the logit link with the binomial family produces the logistic-
regression model (linear-logit model).
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• Combining the probit link with the binomial family produces the linear
probit model.
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3. Poisson GLMs for Count Data
I Poisson generalized linear models arise in two common formally

identical but substantively distinguishable contexts:

1. when the response variable in a regression model takes on non-negative
integer values, such as a count;

2. to analyze associations among categorical variables in a contingency
table of counts.

I The canonical link for the Poisson family is the log link.
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3.1 Over-Dispersed Binomial and Poisson Models
I The binomial and Poisson GLMs fix the dispersion parameter  to 1.

I It is possible to fit versions of these models in which the dispersion is a
free parameter, to be estimated along with the coefficients of the linear
predictor
• The resulting error distribution is not an exponential family; the models

are fit by “quasi-likelihood.”

I The regression coefficients are unaffected by allowing dispersion
different from 1, but the coefficient standard errors are multiplied by the
square-root of b.
• Because the estimated dispersion typically exceeds 1, this inflates the

standard errors

• That is, failing to account for “over-dispersion” produces misleadingly
small standard errors.
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I So-called over-dispersed binomial and Poisson models arise in several
different circumstances.
• For example, in modeling proportions, it is possible that
· the probability of success  varies for different individuals who

share identical values of the predictors (this is called “unmodeled
heterogeneity”);

· or the individual successes and failures for a “binomial” observation
are not independent, as required by the binomial distribution.

I The negative-binomial distribution is also frequently used to model
over-dispersed count data.
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4. Diagnostics for GLMs
I Most regression diagnostics extend straightforwardly to generalized

linear models.

I These extensions typically take advantage of the computation of
maximum-likelihood estimates for generalized linear models by iterated
weighted least squares (the procedure typically used to fit GLMs).
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4.1 Outlier, Leverage, and Influence Diagnostics

4.1.1 Hat-Values

I Hat-values for a generalized linear model can be taken directly from the
final iteration of the IWLS procedure

I They have the usual interpretation — except that the hat-values in a
GLM depend on  as well as on the configuration of the  ’s.
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4.1.2 Residuals

I Several kinds of residuals can be defined for generalized linear models:
• Response residuals are simply the differences between the observed

response and its estimated expected value:  − b.
• Working residuals are the residuals from the final WLS fit.
· These may be used to define partial residuals for component-plus-

residual plots (see below).

• Pearson residuals are case-wise components of the Pearson
goodness-of-fit statistic for the model:b12( − b)qb (|)
where  is the dispersion parameter for the model and  (|) is the
variance of the response given the linear predictor.
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• Standardized Pearson residuals correct for the conditional response
variation and for the leverage of the observations:

 =
 − bqb (|)(1− )

.

• Deviance residuals, , are the square-roots of the case-wise
components of the residual deviance, attaching the sign of  − b.

I Standardized deviance residuals are

 =
qb(1− )

I Several different approximations to studentized residuals have been
suggested.
• To calculate exact studentized residuals would require literally refitting

the model deleting each observation in turn, and noting the decline in
the deviance.
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• Here is an approximation due to Williams:

∗ =
q
(1− )

2
 + 

2


where, once again, the sign is taken from  − b.
• A Bonferroni outlier test using the standard normal distribution may be

based on the largest absolute studentized residual.
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4.1.3 Influence Measures

I An approximation to Cook’s distance influence measure is

 =
2b( + 1) × 

1− 

I Approximate values of dfbeta and dfbetas (influence and standardized
influence on each coefficient) may be obtained directly from the final
iteration of the IWLS procedure.

I There are two largely similar extensions of added-variable plots to
generalized linear models, one due to Wang and another to Cook and
Weisberg.
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4.2 Nonlinearity Diagnostics
I Component-plus-residual plots also extend straightforwardly to general-

ized linear models.
• Nonparametric smoothing of the resulting scatterplots can be impor-

tant to interpretation, especially in models for binary responses, where
the discreteness of the response makes the plots difficult to examine.

• Similar effects can occur for binomial and Poisson data.

I Component-plus-residual plots use the linearized model from the last
step of the IWLS fit.
• For example, the partial residual for  adds the working residual to
.

• The component-plus-residual plot graphs the partial residual against
.
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5. Logit and Loglinear Models for
Contingency Tables

5.1 The Binomial Logit Model for Contingency Tables
I When the explanatory variables — as well as the response variable

— are discrete, the joint sample distribution of the variables defines a
contingency table of counts.

I An example, drawn from The American Voter (Converse et al., 1960),
appears below.
• This table, based on data from a sample survey conducted after the

1956 U.S. presidential election, relates voting turnout in the election
to strength of partisan preference, and perceived closeness of the
election:

c° 2010 by John Fox York SPIDA

Generalized Linear Models 26

Turnout
Perceived
Closeness

Intensity of
Preference

Voted
Did Not

Vote
One-Sided Weak 91 39

Medium 121 49
Strong 64 24

Close Weak 214 87
Medium 284 76
Strong 201 25
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• The following table gives the empirical logit for the response variable,

log
proportion voting

proportion not voting
for each of the six combinations of categories of the explanatory
variables:

Perceived
Closeness

Intensity of
Preference

log
Voted

Did Not Vote
One-Sided Weak 0.847

Medium 0.904
Strong 0.981

Close Weak 0.900
Medium 1.318
Strong 2.084
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· For example,
logit(voted|one-sided, weak preference)

= log
91130

39130

= log
91

39
= 0847

· Because the conditional proportions voting and not voting share the
same denominator, the empirical logit can also be written as

log
number voting

number not voting
· The empirical logits are graphed in Figure 4, much in the manner of

profiles of cell means for a two-way analysis of variance.
I Logit models are fully appropriate for tabular data.
• When, as in the example, the explanatory variables are qualitative or

ordinal, it is natural to use logit or probit models that are analogous to
analysis-of-variance models.
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Figure 4. Empirical logits for the American Voter data.
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• Treating perceived closeness of the election as the ‘row’ factor and
intensity of partisan preference as the ‘column’ factor, for example,
yields the model

logit  = +  +  + 
where
·  is the conditional probability of voting in combination of levels 

of perceived closeness and  of preference;

·  is the general mean of turnout in the population;

·  is the main effect on turnout of membership in the th level of
perceived closeness;

·  is the main effect on turnout of membership in the th levels of
preference; and

·  is the interaction effect on turnout of simultaneous membership
in levels  of perceived closeness and  of preference.
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• Under the usual sigma constraints, this model leads to deviation-coded
regressors (contr.sum in R), as in the analysis of variance.

• Likelihood-ratio tests for main-effects and interactions can be con-
structed in close analogy to the incremental  -tests for the two-way
ANOVA model.
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5.2 Loglinear Models
I Poisson GLMs may also be used to fit loglinear models to a contingency

table of frequency counts, where the object is to model association
among the variables in the table.

I The variables constituting the classifications of the table are treated as
‘explanatory variables’ in the Poisson model, while the cell count plays
the role of the ‘response.’

I We previously examined Campbell et al.’s data on voter turnout in the
1956 U. S. presidential election
• We used a binomial logit model to analyze a three-way contingency

table for turnout by perceived closeness of the election and intensity
of partisan preference.

• The binomial logit model treats turnout as the response.

I An alternative is to construct a log-linear model for the expected cell
count.
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• This model looks very much like a three-way ANOVA model, where in
place of the cell mean we have the log cell expected count:

log = +  +  + 
+ +  +  + 

• Here, variable 1 is perceived closeness of the election; variable 2 is
intensity of preference; and variable 3 is turnout.

• Although a term such as  looks like an ‘interaction,’ it actually
models the association between variables 1 and 2.

• The three-way term  allows the association between any pair of
variables to be different in different categories of the third variable; it
thus represents an interaction in the usual sense of that concept.

I In fitting the log-linear model to data, we can use sigma-constraints on
the parameters, much as we would for an ANOVA model.
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I In the context of a three-way contingency table, the loglinear model
above is a saturated model, because it has as many independent
parameters (12) as there are cells in the table.

I The likelihood-ratio test for the three-way term Closeness × Preference
× Turnout is identical to the test for the Closeness × Preference
interaction in the logit model in which Turnout is the response variable.

I In general, as long as we fit the parameters for the associations
among the explanatory variable (here Closeness×Preference and, of
course, its lower-order relatives, Closeness and Preference) and for the
marginal distribution of the response (Turnout), the loglinear model for a
contingency table is equivalent to a logit model.
• There is, therefore, no real advantage to using a loglinear model in

this setting.

• Loglinear models, however, can be used to model association in other
contexts.

c° 2010 by John Fox York SPIDA



Generalized Linear Models 35

6. Implementation of GLMs in R
I The glm() function in R is very similar in use to lm(),

glm(formula, family, data, subset,
weights, na.action, contrasts)

I The family argument is one of gaussian (the default), binomial,
poisson, Gamma, inverse.gaussian, quasi, quasibinomial, or
quasipoisson.
• It is possible to write functions for additional families (e.g., the

negative.binomial family for count data in the MASS package).

I The “family-generator” function specified as the value of the family
argument can itself take a link argument (and possibly other arguments);
in each case there is a default link.
• The available links for each family (◦) and the default link (•) are given

in the following table:
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link
family identity inverse sqrt 1/mu^2
gaussian • ◦
binomial
poisson ◦ ◦
Gamma ◦ •
inverse.
gaussian

◦ ◦ •
quasi • ◦ ◦ ◦
quasibinomial
quasipoisson ◦ ◦
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link
family log logit probit cloglog
gaussian ◦
binomial ◦ • ◦ ◦
poisson •
Gamma ◦
inverse.
gaussian

◦
quasi ◦ ◦ ◦ ◦
quasibinomial • ◦ ◦
quasipoisson •
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