## UCLA/CCPR

## Notes

# Maximum-Likelihood Estimation of the Logistic Regression Model 

## John Fox

© 2005 by John Fox

## 1. By Newton-Raphson

The Newton-Raphson method is a common iterative approach to estimating a logistic-regression model:

1. Choose initial estimates of the regression coefficients, such as $\mathbf{b}_{0}=\mathbf{0}$.
2. At each iteration $t$, update the coefficients:

$$
\mathbf{b}_{t}=\mathbf{b}_{t-1}+\left(\mathbf{X}^{\prime} \mathbf{V}_{t-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{y}-\mathbf{p}_{t-1}\right)
$$

where

- X is the model matrix, with $\mathrm{x}_{i}^{\prime}$ as its $i$ th row;
-y is the response vector (containing 0 's and 1 's);
- $\mathbf{p}_{t-1}$ is the vector of fitted response probabilities from the previous iteration, the $i$ th entry of which is

$$
p_{i, t-1}=\frac{1}{1+\exp \left(-\mathbf{x}_{i}^{\prime} \mathbf{b}_{t-1}\right)}
$$

- $\mathbf{V}_{t-1}$ is a diagonal matrix, with diagonal entries $p_{i, t-1}\left(1-p_{i, t-1}\right)$.

3. Step 2 is repeated until $\mathbf{b}_{t}$ is close enough to $\mathbf{b}_{t-1}$. The estimated asymptotic covariance matrix of the coefficients is given by $\left(\mathbf{X}^{\prime} \mathbf{V X}\right)^{-1}$

## 2. By General Optimization

Another approach is to let a general-purpose optimizer do the work of maximizing the log-likelihood,

$$
\log _{e} L=\sum y_{i} \log _{e} p_{i}+\left(1-y_{i}\right) \log _{e}\left(1-p_{i}\right)
$$

- Optimizers work by evaluating the gradient (vector of partial derivatives) of the 'objective function' (the log-likelihood) at the current estimates of the parameters, iteratively improving the parameter estimates using the information in the gradient; iteration ceases when the gradient is sufficiently close to zero.
- For the logistic-regression model, the gradient of the log-likelihood is

$$
\frac{\partial \log _{e} L}{\partial \mathbf{b}}=\sum\left(y_{i}-p_{i}\right) \mathbf{x}_{i}
$$

- The covariance matrix of the coefficients is the inverse of the matrix of second derivatives. The matrix of second derivatives, called the Hessian, is

$$
\frac{\partial \log _{e} L}{\partial \mathbf{b} \partial \mathbf{b}^{\prime}}=\mathbf{X}^{\prime} \mathbf{V} \mathbf{X}
$$

The optim function in R, however, calculates the Hessian numerically (rather than using an analytic formula).

