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1. Goals
I To introduce the notion of regression analysis as a description of how

the average value of a response variable changes with the value(s) of
one or more explanatory variables.

I To show that this essential idea can be pursued ‘nonparametrically’
without making strong prior assumptions about the structure of the data.

I To introduce or review basic concepts: skewness, sampling variance,
bias, outliers, etc.

I To introduce the R statistical computing environment.
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2. Introduction
I Regression analysis traces the distribution of a response (or dependent)

variable (denoted by ) as a function of one or more explanatory (or
independent or predictor ) variables ( 1 ):

( | 1 ) = ( 1 )

• ( | 1 ) represents the probability (or, for continuous , the
probability density) of observing the specific value of the response
variable, conditional upon a set of specific values ( 1 ) of the
explanatory variables.

I Imagine, for example, that is individuals’ income and that the ’s
are a variety of characteristics upon which income might depend, such
as education, gender, age, and so on. In what follows, I restrict
consideration to quantitative ’s, such as years of education and age.
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I Most discussions of regression analysis begin by assuming (see Figure
1, drawn for a single explanatory variable )
• that the conditional distribution of the response variable, ( | 1 ),

is a normal distribution
• that the variance of conditional on the ’s, denoted 2, is every-

where the same regardless of the specific values of 1

• and that the expected value (the mean) of is a linear function of the
’s:

( | 1 ) = + 1 1 + · · · +
• These assumptions, along with independent random sampling, lead to

linear least-squares estimation.

I In contrast, I will pursue the notion of regression with as few precon-
ceived assumptions as possible.
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Figure 1. The usual assumptions: linearity, constant variance, and nor-
mality, for a single .
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I Figure 2 (for a single ) illustrates why we should not be too hasty to
make the assumptions of normality, equal variance, and linearity:
• Skewness. If the conditional distribution of is skewed then the

mean will not be a good summary of its center.
• Multiple modes. If the conditional distribution of is multimodal then

it is intrinsically unreasonable to summarize its center with a single
number.

• Heavy tails. If the conditional distribution of is substantially non-
normal — for example, heavy-tailed — then the sample mean will not
be an efficient estimator of the center of the -distribution even when
this distribution is symmetric.

• Unequal spread. If the conditional variance of changes with the
values of the ’s then the efficiency of the usual least-squares esti-
mates may be compromised; moreover, the nature of the dependence
of the variance on the ’s may itself be of interest.
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Figure 2. How the usual regression assumptions can fail.
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• Nonlinearity. Although we are often in a position to expect that the
values of will increase or decrease with some , there is almost
never good reason to assume a priori that the relationship between
and is linear; this problem is compounded when there are several

’s.

I This is not to say, of course, that linear regression analysis or, more
generally, linear statistical models, are of little practical use. Much of
this course is devoted to the exposition of linear models. It is, however,
prudent to begin with an appreciation of the limitations of linear models,
since their effective use in data analysis frequently depends upon
adapting to these limitations.
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3. Naive Nonparametric Regression
I We have a large random sample of employed Canadians that includes

hourly wages and years of education.
• We could easily display the conditional distribution of wages for each

of the values of education (0 1 2 20) that occur in our data, as in
Figure 3.

• If we are interested in the population average or typical value of wages
conditional on education, | , we could estimate (most of) these
conditional averages very accurately using the sample means |
(see Figure 4).
– Using the conditional means isn’t a good idea here because the

conditional distributions of wages given education are positively
skewed.

• Had we access to the entire population of employed Canadians, we
could calculate | directly.
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Figure 3. The conditional distribution of hourly wages for the 3384 em-
ployed Canadians in the SLID who had 12 years of education. The broken
vertical line shows the conditional mean wages.
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Figure 4. A scatterplot showing the relationship between hourly wages (in
dollars) and education (in years) for a sample of 14,601 employed Cana-
dians.
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I Imagine now that , along with , is a continuous variable.
• For example, is the reported weight in kilograms for each of a

sample of individuals, and is their measured weight, again in
kilograms. (The example isn’t plausible since reported weight would
not literally be continuous, but imagine that it is.)

• We want to use reported weight to predict actual (i.e., measured)
weight, and so we are interested in the mean value of as a function
of in the population of individuals from among whom the sample
was randomly drawn:

= ( | ) = ( )

• Even if the sample is large, replicated values of will be rare because
is continuous, but for a large sample we can dissect the range of
into many narrow class intervals (or bins) of reported weight, each

bin containing many observations; within each bin, we can display
the conditional distribution of measured weight and estimate the
conditional mean of with great precision.
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• If we have fewer data at our disposal, we have to make do with fewer
bins, each containing relatively few observations.

• This situation is illustrated in Figure 5, using data on reported and
measured weight for each of 101 Canadian women engaged in regular
exercise.

• Another example, using the prestige and income levels of 102
Canadian occupations in 1971, appears in Figure 6.

• The -axes in these figures are carved into bins, each containing
approximately 20 observations (the first and last bins contain the extra
observations). The ‘non-parametric regression line’ displayed on each
plot is calculated by connecting the points defined by the conditional
response-variable means and the explanatory-variable means in
the five bins.
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Figure 5. Naive nonparametric regression of measured on reported
weight. The data are carved into fifths based on their -values and the
average in each fifth is calculated (the solid dots). Note the effect of the
outlier (observation 4).
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Figure 6. Naive nonparametric regression of occupational prestige on av-
erage income.
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I There are two sources of error in this simple procedure of binning and
averaging :
• Sampling error (variance). The conditional sample means will

change if we select a new sample. Sampling error is minimized by
using a small number of relatively wide bins, each with a substantial
number of observations.

• Bias. Let denote the center of the th bin (here, = 1 5). If the
population regression curve ( ) is nonlinear within the interval, then
the average population value of in the interval ( ) is usually different
from the value of the regression curve at the center of the interval,
= ( ), even if the -values are evenly distributed within the

interval. Bias is minimized by making the class-intervals as numerous
and as narrow as possible (see Figure 7).
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Figure 7. A narrow bin (b) generally produces less bias in estimating the
regression curve than a wide bin (a).
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I As is typically the case in statistical estimation, reducing bias and
reducing sampling variance work at cross purposes.
• Only if we select a very large sample can we have our cake and eat it

too.
• Naive nonparametric regression is, under very broad conditions, a

consistent estimator of the population regression curve. As the sample
size gets larger (i.e., as ), we can insure that the intervals grow
successively narrower, yet each contains more data.

I When there is more than one explanatory variable naive nonparametric
regression is less practical:
• Suppose, for example, that we have three discrete explanatory

variables, each with ten values. There are, then, 103 = 1 000
combinations of values of the three variables, and within each such
combination there is a conditional distribution of [i.e., ( | 1 2 3)].
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• Even if the ’s are independently distributed — implying equal
expected numbers of observations for each of the 1 000 combinations
— we would require a very large sample indeed to calculate the
conditional means of with sufficient precision.

• The situation is even worse when the ’s are continuous, since
dissecting the range of each into as few as ten class intervals might
introduce substantial bias into the estimation.

• The problem of dividing the data into too many parts grows expo-
nentially more serious as the number of ’s increases. Statisticians
therefore often refer to the intrinsic sparseness of multivariate data as
the ‘curse of dimensionality.’
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4. Local Regression
I There are much better methods of nonparametric regression than

binning and averaging. We often will use a method called local
regression as a data-analytic tool to smooth scatterplots.
• Local regression produces a smoothed fitted value b corresponding to

any -value in the range of the data — usually, at the data-values .
• To find smoothed values, the procedure fits linear (or polynomial)

regressions to the data, one for each observation , emphasizing the
points with -values that are near . This procedure is illustrated in
Figure 8.

I Here are the details (but don’t worry about them):

1. Choose the span: Select a fraction of the data 0 1 (called the
span of the smoother) to include in each fit, corresponding to [ × ]
data values. Often = 1

2 or = 2
3 works well. Larger values of produce

smoother results.
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Figure 8. Local linear regression of occupational prestige on income,
showing the computation of the fit at (80).
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2. Locally weighted regressions: For each = 1 2 , select the
values of closest to , denoted 1 2 . The window half-
width for observation is then the distance to the farthest ; that is,

max =1 | |. In panel (a) of Figure 8 the span is selected to
include the = 40 nearest neighbours of the focal value (80) (which
denotes the 80th ordered -value).

a. Calculate weights: For each of the observations in the window,
compute the weight μ ¶
where (·) is the tricube weight function (see panel b):

( ) =

½
(1 | |3)3 for | | 1

0 for | | 1
The tricube function assigns greatest weight to observations at the
centre of the window and weights of 0 outside of the window.
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b. Local WLS fit: Having computed the weights, fit the local regression
equation

= + 1 +
to minimize

P
=1

2 (i.e., by weighted least squares).
c. Fitted value: Compute the fitted valueb = + 1

One regression equation is fit, and one fitted value is calculated,
for each = 1 [see panel (c)]. Connecting these fitted values
produces the nonparametric regression smooth [panel (d)].
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5. Summary
I Regression analysis examines the relationship between a quantitative

response variable and one or more quantitative explanatory variables,
1 . Regression analysis traces the conditional distribution of

— or some aspect of this distribution, such as its mean — as a function
of the ’s.

I In very large samples, and when the explanatory variables are discrete, it
is possible to estimate a regression by directly examining the conditional
distribution of given the ’s. When the explanatory variables are
continuous, we can proceed similarly by dissecting the ’s into a large
number of narrow bins.

I Local regression allows us to trace how the average changes with
even in small samples.
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