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1. Introduction

» A synthesis due to Nelder and Wedderburn, generalized linear models
(GLMs) extend the range of application of linear statistical models
by accommodating response variables with non-normal conditional
distributions.

» Except for the error, the right-hand side of a generalized linear model is
essentially the same as for a linear model.
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2. Goals

» To introduce the format and structure of generalized linear models

» To show how the familiar linear, logit, and probit models fit into the GLM
framework.

» To introduce Poisson generalized linear models for count data.
» To describe diagnostics for generalized linear models.
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3. The Structure of Generalized Linear
Models

» A generalized linear model consists of three components:

1. A random component, specifying the conditional distribution of the
response variable, Y;, given the explanatory variables.

e Traditionally, the random component is a member of an “exponential
family” — the normal (Gaussian), binomial, Poisson, gamma, or
inverse-Gaussian families of distributions — but generalized linear
models have been extended beyond the exponential families.

e The Gaussian and binomial distributions are familiar.

e Poisson distributions are often used in modeling count data. Poisson
random variables take on non-negative integer values, 0,1,2,....
Some examples are shown in Figure 1.
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Figure 1. Poisson distributions for various values of the “rate” parameter

(mean) L.
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e The gamma and inverse-Gaussian distributions are for positive
continuous data; some examples are given in Figure 2.

2. A linear function of the regressors, called the linear predictor,
n;=a+ 1 Xig+ -+ B Xk
on which the expected value y,; of Y; depends.
e The X's may include quantitative predictors, but they may also include
transformations of predictors, polynomial terms, contrasts generated
from factors, interaction regressors, etc.

3. An invertible link function g(y;) = n;, which transforms the expectation
of the response to the linear predictor.
e The inverse of the link function is sometimes called the mean function:

9_1(772‘) = M-
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Figure 2. (a) Several gamma distributions for “scale” w = 1 and various
values of the “shape” parameter ). (b) Inverse-Gaussian distributions for
several combinations of values of the mean . and “inverse-dispersion” \.
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e Standard link functions and their inverses are shown in the following
table:

Link = g(t:) =g (1)

identity 14 n;

log log, p; e'li

inverse it ;!

inverse-square 1 12

square-root VI 77172

H 7

|Oglt 1Og(3 = m m

probit O (p,) d(n;)

log-log —log [—log,(11;)] | exp[—exp(—n;)]

complementary log-log | log,[—log.(1 — p;)] | 1 — exp[— exp(n;)]

e The logit, probit, and complementary-log-log links are for binomial
data, where Y; represents the observed proportion and yu, the
expected proportion of “successes” in n; binomial trials — that is, p; is
the probability of a success.
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— For the probit link, ¢ is the standard-normal cumulative distribution
function, and ®~! is the standard-normal quantile function.

— An important special case is binary data, where all of the binomial
trials are 1, and therefore all of the observed proportions Y; are
either 0 or 1. This is the case that we examined the previous lecture.

» For distributions in the exponential families, the conditional variance of
Y is a function of the mean p together with a dispersion parameter ¢ (as
shown in the table below).

e For the binomial and Poisson distributions, the dispersion parameter
is fixed to 1.

e For the Gaussian distribution, the dispersion parameter is the usual
error variance, which we previously symbolized by o2 (and which
doesn’t depend on ).
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Family Canonical Link | Range of Y; | V(Y;|n;)
Gaussian identity (—00, +00) o
. . . 0,1,...,n; (1 — p,
binomial logit i [ )
Poisson log 0,1,2,... L4
gamma inverse (0, 00) du?
inverse-Gaussian | inverse-square (0, 00) b
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» The canonical link for each familiy is not only the one most commonly
used, but also arises naturally from the general formula for distributions
in the exponential families.
e Other links may be more appropriate for the specific problem at hand

e One of the strengths of the GLM paradigm — in contrast, for example,
to transformation of the response variable in a linear model — is the
separation of the link function from the conditional distribution of the
response.

» GLMs are typically fit to data by the method of maximum likelihood.
e Denote the maximum-likelihood estimates of the regression parame-
ters as a, 34, ..., B
— These imply an estimate of the mean of the response, w, =

g Ha+ Byxis + -+ Brzik).
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e The log-likelihood for the model, maximized over the regression
coefficients, is

n

log, Ly = Z log, p(1i;, ¢; i)

i=1
where p(+) is the probability or probability-density function correspond-
ing to the family employed.
e A “saturated” model, which dedicates one parameter to each observa-
tion, and hence fits the data perfectly, has log-likelihood

log, Ly =Y _log, p(yi, ¢: i)
1=1
e Twice the difference between these log-likelihoods defines the residual
deviance under the model, a generalization of the residual sum of

squares for linear models:
D(y; ) = 2(log, Ly — log, Lo)
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e Dividing the deviance by the estimated dispersion produces the scaled
deviance: D(y; i)/ .

e Likelihood-ratio tests can be formulated by taking differences in the
residual deviance for nested models.

e For models with an estimated dispersion parameter, one can alterna-
tively use incremental F'-tests.

e Wald tests for individual coefficients are formulated using the estimated
asymptotic standard errors of the coefficients.

» Some familiar examples:
e Combining the identity link with the Gaussian family produces the

normal linear model.
— The maximum-likelihood estimates for this model are the ordinary

least-squares estimates.
e Combining the logit link with the binomial family produces the logistic-
regression model (linear-logit model).
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e Combining the probit link with the binomial family produces the linear
probit model.

» Although the logit and probit links are familiar, the log-log and comple-
mentary log-log links for binomial data are not.
e These links are compared in Figure 3.
e The log-log or complementary log-log link may be appropriate when
the probability of the response as a function of the linear predictor
approaches 0 and 1 asymmetrically.
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Figure 3. Comparison of logit, probit, and complementary log-log links.
The probit link is rescaled to match the variance of the logistic distribution,
/3.
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4. Poisson GLMs for Count Data

» Poisson generalized linear models arise in two common formally
identical but substantively distinguishable contexts:

15

1. when the response variable in a regression model takes on non-negative
integer values, such as a count;

2. to analyze associations among categorical variables in a contingency
table of counts (an application that | won't take up here).

» The canonical link for the Poisson family is the log link.
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4.1 Poisson Regression

» Recall Ornstein’s data on interlocking director and top-executive
positions among 248 major Canadian firms
e Ornstein performed a least-squares regression of the number of
interlocks maintained by each firm on the firm’'s assets, and dummy
variables for the firm’s nation of control and sector of operation.

e | found that a square-root transformation of the response variable
tends to stabilize residual variance and make the distribution of the
residuals more symmetric.

» Because the response variable is a count, a Poisson linear model might

be preferable.
e The marginal distribution of number of interlocks, in Figure 4, shows
many zero counts and an extreme positive skew.

e Fitting a Poisson GLM with log link to Ornstein’s data produces the
following results:

(© 2014 by John Fox Sociology 740
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Figure 4. Distribution of number of interlocks maintained by 248 large
Canadian corporations.
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Coefficient Standard Error
Constant 2.32 0.052
Assets 0.0000209 0.0000012
Nation of Control (baseline: Canada)
Other —0.163 0.073
United Kingdom —0.577 0.089
United States —0.826 0.049
Sector (baseline: Agriculture and Food)
Banking —0.409 0.156
Construction —0.620 0.211
Finance 0.677 0.069
Holding Company 0.208 0.119
Manufacturing 0.0527 0.0752
Merchandizing 0.178 0.087
Mining 0.621 0.069
Transportation 0.678 0.075
Wood and Forest Products 0.712 0.075
© 2014 by John Fox Sociology 740
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— An analysis of deviance table for the model shows that all three
explanatory variables have highly statistically significant effects:

Source G? df P

Assets 390.90 1 <« .0001
Nation of Control | 328.94 3 < .0001
Sector 361.46 9 < .0001

— The deviance for the null model (with only a constant) is 3737.0, and
1887.4 for the full model; thus an analog of the squared multiple

correlation is 1887 4
) )
=]1l——=24
1t 3737.0 9

— Effect displays for the model are shown in Figure 5.
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4.2 Over-Dispersed Binomial and Poisson Models
» The binomial and Poisson GLMs fix the dispersion parameter ¢ to 1.

» It is possible to fit versions of these models in which the dispersion is a
free parameter, to be estimated along with the coefficients of the linear
predictor
e The resulting error distribution is not an exponential family; the models

are fit by “quasi-likelihood.”

» The regression coefficients are unaffected by allowing dispersion
different from 1, but the coefficient standard errors are multiplied by the
square-root of ¢.

e Because the estimated dispersion typically exceeds 1, this inflates the
standard errors

e That is, failing to account for “over-dispersion” produces misleadingly
small standard errors.

(© 2014 by John Fox Sociology 740
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Figure 5. Effect displays for the (over-dispersed) Poisson regression model
fity0.Qrnstein’s interlocking-directorate data.
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» So-called over-dispersed binomial and Poisson models arise in several
different circumstances.
e For example, in modeling proportions, it is possible that
— the probability of success p varies for different individuals who
share identical values of the predictors (this is called “unmodeled
heterogeneity”);

— or the individual successes and failures for a “binomial” observation
are not independent, as required by the binomial distribution.

(© 2014 by John Fox Sociology 740
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5. Diagnostics for GLMS

» Most regression diagnostics extend straightforwardly to generalized
linear models.

» These extensions typically take advantage of the computation of
maximum-likelihood estimates for generalized linear models by iterated
weighted least squares (the procedure typically used to fit GLMSs).
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5.1 Outlier, Leverage, and Influence Diagnhostics

5.1.1 Hat-Values

» Hat-values for a generalized linear model can be taken directly from the
final iteration of the IWLS procedure

» They have the usual interpretation — except that the hat-values in a
GLM depend on Y as well as on the configuration of the X's.

(© 2014 by John Fox Sociology 740
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5.1.2 Residuals

» Several kinds of residuals can be defined for generalized linear models:
e Response residuals are simply the differences between the observed
response and its estimated expected value: Y; — 1.

e Working residuals are the residuals from the final WLS fit.
— These may be used to define partial residuals for component-plus-
residual plots (see below).

e Pearson residuals are case-wise components of the Pearson

goodness-of-fit statistic for the model:
~1/2

¢ (Y-,
where ¢ is the dispersion parameter for the model and V' (Y;|n,) is the
variance of the response given the linear predictor.
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e Standardized Pearson residuals correct for the conditional response
variation and for the leverage of the observations:
Y, — 0.
Rp; = O

VV(Xln)(1 - h)

e Deviance residuals, D;, are the square-roots of the case-wise
components of the residual deviance, attaching the sign of Y; — ji,.

» Standardized deviance residuals are

D;
Rp; = A—‘
(1 — hy)
» Several different approximations to studentized residuals have been

suggested.

e To calculate exact studentized residuals would require literally refitting
the model deleting each observation in turn, and noting the decline in
the deviance.
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e Here is an approximation due to Williams:
E; = /(1 h)R}, + R,
where, once again, the sign is taken from Y; — 7.

e A Bonferroni outlier test using the standard normal distribution may be
based on the largest absolute studentized residual.
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5.1.3 Influence Measures

» An approximation to Cook’s distance influence measure is
Ry, hi
P = — 4 ><
p(k+1) 1—h
» Approximate values of dfbeta,; and dfbetas;; (influence and standardized

influence on each coefficient) may be obtained directly from the final
iteration of the IWLS procedure.

» There are two largely similar extensions of added-variable plots to
generalized linear models, one due to Wang and another to Cook and
Weisberg.
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5.2 Nonlinearity Diagnostics

» Component-plus-residual plots also extend straightforwardly to general-
ized linear models.
e Nonparametric smoothing of the resulting scatterplots can be impor-
tant to interpretation, especially in models for binary responses, where
the discreteness of the response makes the plots difficult to examine.

e Similar effects can occur for binomial and Poisson data.
» Component-plus-residual plots use the linearized model from the last
step of the IWLS fit.
e For example, the partial residual for X; adds the working residual to
Binj-
e The component-plus-residual plot graphs the partial residual against

X;.
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» An illustrative component+residual plot, for assets in the over-dispersed
Poisson regression fit to Ornstein’s interlocking-directorate data appears
in Figure 6.
e This plot is difficult to examine because of the large positive skew in
assets, but it appears as if the assets slope is a good deal steeper at
the left than at the right.

e | therefore investigated transforming assets down the ladder of
powers and roots, eventually arriving at the log transformation, the
component+residual plot for which appears quite straight (Figure 7).
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Figure 6. Component+residual plot for assets in the over-dispersed Pois-
son regression for Ornstein’s data.
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Component+Residual Plot

Component+Residual(interlocks)
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Figure 7. Component+residual plot for log(assets) in the respecified
over-dispersed Poisson regression model for Ornstein’s data.
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6. Summary

» Generalized linear models (GLMs) consist of three components:

(a) A random component specifying the conditional distribution of the
response variable Y given the explanatory variables, traditionally a
member of an exponential family — the normal (Gaussian), binomial,
Poisson, gamma, or inverse-Gaussian families of distributions.

— For distributions in exponential families, the conditional variance of
Y is a function of i, the mean of Y, and of a dispersion parameter
¢; in the binomial and Poisson families, ¢ is fixed to 1.

(b) A linear predictor, n, = a + 3, X1 + - - - + 3. Xix.

(c) A link function ¢(u;) = n,, which transforms the expectation of the
response to the linear predictor; the inverse of the link is the mean
function, ¢g71(n;) = u;-

(© 2014 by John Fox Sociology 740




Generalized Linear Models: An Introduction 34

» Traditional GLMs are fit to data by maximum likelihood.
e The deviance under a fitted model is D(y; i) = 2(log, L1 — log, Ly),
where y contains the observed values of the response variable,
p contains the fitted values of the response, L; is the maximized
likelihood for a saturated model that dedicates one parameter to each
observation, and L is the maximized likelihood under the model in
guestion.

e The scaled deviance is D(y; ﬁ)/@, where ¢ is an estimate of the
dispersion.

¢ In analogy to incremental F'-tests in an analysis of variance for linear
models, differences in deviance may be used for likelihood-ratio tests
in GLMs; for models with a dispersion parameter, F'-tests are also
available.

e Wald tests for individual coefficients are produced by dividing the
estimated coefficients by their standard errors.
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» The binomial family is used for dichotomous response variables. Pairing
the binomial family with the logit link produces the logistic-regression
model; pairing the binomial family with the probit link produces the probit
model.

» The Poisson family is often used to analyze count data. The canonical
link for the Poisson family is the log link.

» Over-dispersed binomial and Poisson models introduce a dispersion
parameter ¢ that is not fixed to 1; these models are fit by quasi-likelihood.

» Most standard linear-model diagnostics may be generalized to GLMs.
These include hat-values, studentized residuals, Cook’s distances,
added-variable plots, and component-plus-residual plots (among
others).
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