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1. Introduction
I A synthesis due to Nelder and Wedderburn, generalized linear models

(GLMs) extend the range of application of linear statistical models
by accommodating response variables with non-normal conditional
distributions.

I Except for the error, the right-hand side of a generalized linear model is
essentially the same as for a linear model.
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2. Goals
I To introduce the format and structure of generalized linear models

I To show how the familiar linear, logit, and probit models fit into the GLM
framework.

I To introduce Poisson generalized linear models for count data.

I To describe diagnostics for generalized linear models.
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3. The Structure of Generalized Linear
Models
I A generalized linear model consists of three components:

1. A random component, specifying the conditional distribution of the
response variable, , given the explanatory variables.
• Traditionally, the random component is a member of an “exponential

family” — the normal (Gaussian), binomial, Poisson, gamma, or
inverse-Gaussian families of distributions — but generalized linear
models have been extended beyond the exponential families.

• The Gaussian and binomial distributions are familiar.
• Poisson distributions are often used in modeling count data. Poisson

random variables take on non-negative integer values, 0 1 2 .
Some examples are shown in Figure 1.
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Figure 1. Poisson distributions for various values of the “rate” parameter
(mean) .
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• The gamma and inverse-Gaussian distributions are for positive
continuous data; some examples are given in Figure 2.

2. A linear function of the regressors, called the linear predictor,
= + 1 1 + · · · +

on which the expected value of depends.
• The ’s may include quantitative predictors, but they may also include

transformations of predictors, polynomial terms, contrasts generated
from factors, interaction regressors, etc.

3. An invertible link function ( ) = , which transforms the expectation
of the response to the linear predictor.
• The inverse of the link function is sometimes called the mean function:

1( ) = .
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Figure 2. (a) Several gamma distributions for “scale” = 1 and various
values of the “shape” parameter . (b) Inverse-Gaussian distributions for
several combinations of values of the mean and “inverse-dispersion” .
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• Standard link functions and their inverses are shown in the following
table:

Link = ( ) = 1( )
identity
log log
inverse 1 1

inverse-square 2 1 2

square-root 2

logit log
1

1

1 +
probit 1( ) ( )
log-log log [ log ( )] exp[ exp( )]
complementary log-log log [ log (1 )] 1 exp[ exp( )]

• The logit, probit, and complementary-log-log links are for binomial
data, where represents the observed proportion and the
expected proportion of “successes” in binomial trials — that is, is
the probability of a success.
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– For the probit link, is the standard-normal cumulative distribution
function, and 1 is the standard-normal quantile function.

– An important special case is binary data, where all of the binomial
trials are 1, and therefore all of the observed proportions are
either 0 or 1. This is the case that we examined the previous lecture.

I For distributions in the exponential families, the conditional variance of
is a function of the mean together with a dispersion parameter (as

shown in the table below).
• For the binomial and Poisson distributions, the dispersion parameter

is fixed to 1.
• For the Gaussian distribution, the dispersion parameter is the usual

error variance, which we previously symbolized by 2 (and which
doesn’t depend on ).
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Family Canonical Link Range of ( | )
Gaussian identity ( + )

binomial logit
0 1 (1 )

Poisson log 0 1 2
gamma inverse (0 ) 2

inverse-Gaussian inverse-square (0 ) 3
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I The canonical link for each familiy is not only the one most commonly
used, but also arises naturally from the general formula for distributions
in the exponential families.
• Other links may be more appropriate for the specific problem at hand
• One of the strengths of the GLM paradigm — in contrast, for example,

to transformation of the response variable in a linear model — is the
separation of the link function from the conditional distribution of the
response.

I GLMs are typically fit to data by the method of maximum likelihood.
• Denote the maximum-likelihood estimates of the regression parame-

ters as b b1 b .
– These imply an estimate of the mean of the response, b =

1(b + b1 1 + · · · + b ).
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• The log-likelihood for the model, maximized over the regression
coefficients, is

log 0 =
X
=1

log (b ; )

where (·) is the probability or probability-density function correspond-
ing to the family employed.

• A “saturated” model, which dedicates one parameter to each observa-
tion, and hence fits the data perfectly, has log-likelihood

log 1 =
X
=1

log ( ; )

• Twice the difference between these log-likelihoods defines the residual
deviance under the model, a generalization of the residual sum of
squares for linear models:

(y; b) = 2(log 1 log 0)
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• Dividing the deviance by the estimated dispersion produces the scaled
deviance: (y; b) b.

• Likelihood-ratio tests can be formulated by taking differences in the
residual deviance for nested models.

• For models with an estimated dispersion parameter, one can alterna-
tively use incremental -tests.

• Wald tests for individual coefficients are formulated using the estimated
asymptotic standard errors of the coefficients.

I Some familiar examples:
• Combining the identity link with the Gaussian family produces the

normal linear model.
– The maximum-likelihood estimates for this model are the ordinary

least-squares estimates.
• Combining the logit link with the binomial family produces the logistic-

regression model (linear-logit model).
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• Combining the probit link with the binomial family produces the linear
probit model.

I Although the logit and probit links are familiar, the log-log and comple-
mentary log-log links for binomial data are not.
• These links are compared in Figure 3.
• The log-log or complementary log-log link may be appropriate when

the probability of the response as a function of the linear predictor
approaches 0 and 1 asymmetrically.
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Figure 3. Comparison of logit, probit, and complementary log-log links.
The probit link is rescaled to match the variance of the logistic distribution,
2 3.
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4. Poisson GLMs for Count Data
I Poisson generalized linear models arise in two common formally

identical but substantively distinguishable contexts:

1. when the response variable in a regression model takes on non-negative
integer values, such as a count;

2. to analyze associations among categorical variables in a contingency
table of counts (an application that I won’t take up here).

I The canonical link for the Poisson family is the log link.
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4.1 Poisson Regression
I Recall Ornstein’s data on interlocking director and top-executive

positions among 248 major Canadian firms
• Ornstein performed a least-squares regression of the number of

interlocks maintained by each firm on the firm’s assets, and dummy
variables for the firm’s nation of control and sector of operation.

• I found that a square-root transformation of the response variable
tends to stabilize residual variance and make the distribution of the
residuals more symmetric.

I Because the response variable is a count, a Poisson linear model might
be preferable.
• The marginal distribution of number of interlocks, in Figure 4, shows

many zero counts and an extreme positive skew.
• Fitting a Poisson GLM with log link to Ornstein’s data produces the

following results:
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Figure 4. Distribution of number of interlocks maintained by 248 large
Canadian corporations.
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Coefficient Standard Error
Constant 2 32 0 052
Assets 0 0000209 0 0000012
Nation of Control (baseline: Canada)

Other 0 163 0 073
United Kingdom 0 577 0 089
United States 0 826 0 049

Sector (baseline: Agriculture and Food)
Banking 0 409 0 156
Construction 0 620 0 211
Finance 0 677 0 069
Holding Company 0 208 0 119
Manufacturing 0 0527 0 0752
Merchandizing 0 178 0 087
Mining 0 621 0 069
Transportation 0 678 0 075
Wood and Forest Products 0 712 0 075
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– An analysis of deviance table for the model shows that all three
explanatory variables have highly statistically significant effects:

Source 2

Assets 390 90 1 ¿ 0001
Nation of Control 328 94 3 ¿ 0001
Sector 361 46 9 ¿ 0001

– The deviance for the null model (with only a constant) is 3737.0, and
1887.4 for the full model; thus an analog of the squared multiple
correlation is

2 = 1
1887 4

3737 0
= 495

– Effect displays for the model are shown in Figure 5.
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4.2 Over-Dispersed Binomial and Poisson Models
I The binomial and Poisson GLMs fix the dispersion parameter to 1.

I It is possible to fit versions of these models in which the dispersion is a
free parameter, to be estimated along with the coefficients of the linear
predictor
• The resulting error distribution is not an exponential family; the models

are fit by “quasi-likelihood.”

I The regression coefficients are unaffected by allowing dispersion
different from 1, but the coefficient standard errors are multiplied by the
square-root of b.
• Because the estimated dispersion typically exceeds 1, this inflates the

standard errors
• That is, failing to account for “over-dispersion” produces misleadingly

small standard errors.
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Figure 5. Effect displays for the (over-dispersed) Poisson regression model
fit to Ornstein’s interlocking-directorate data.c° 2014 by John Fox Sociology 740
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I So-called over-dispersed binomial and Poisson models arise in several
different circumstances.
• For example, in modeling proportions, it is possible that

– the probability of success varies for different individuals who
share identical values of the predictors (this is called “unmodeled
heterogeneity”);

– or the individual successes and failures for a “binomial” observation
are not independent, as required by the binomial distribution.
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5. Diagnostics for GLMS
I Most regression diagnostics extend straightforwardly to generalized

linear models.

I These extensions typically take advantage of the computation of
maximum-likelihood estimates for generalized linear models by iterated
weighted least squares (the procedure typically used to fit GLMs).
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5.1 Outlier, Leverage, and Influence Diagnostics
5.1.1 Hat-Values
I Hat-values for a generalized linear model can be taken directly from the

final iteration of the IWLS procedure

I They have the usual interpretation — except that the hat-values in a
GLM depend on as well as on the configuration of the ’s.
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5.1.2 Residuals
I Several kinds of residuals can be defined for generalized linear models:
• Response residuals are simply the differences between the observed

response and its estimated expected value: b .
• Working residuals are the residuals from the final WLS fit.

– These may be used to define partial residuals for component-plus-
residual plots (see below).

• Pearson residuals are case-wise components of the Pearson
goodness-of-fit statistic for the model:b1 2( b )qb ( | )
where is the dispersion parameter for the model and ( | ) is the
variance of the response given the linear predictor.
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• Standardized Pearson residuals correct for the conditional response
variation and for the leverage of the observations:

=
bqb ( | )(1 )

.
• Deviance residuals, , are the square-roots of the case-wise

components of the residual deviance, attaching the sign of b .

I Standardized deviance residuals are
= qb(1 )

I Several different approximations to studentized residuals have been
suggested.
• To calculate exact studentized residuals would require literally refitting

the model deleting each observation in turn, and noting the decline in
the deviance.

c° 2014 by John Fox Sociology 740

Generalized Linear Models: An Introduction 27

• Here is an approximation due to Williams:

=
q
(1 ) 2 + 2

where, once again, the sign is taken from b .
• A Bonferroni outlier test using the standard normal distribution may be

based on the largest absolute studentized residual.
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5.1.3 Influence Measures
I An approximation to Cook’s distance influence measure is

=
2b( + 1) × 1

I Approximate values of dfbeta and dfbetas (influence and standardized
influence on each coefficient) may be obtained directly from the final
iteration of the IWLS procedure.

I There are two largely similar extensions of added-variable plots to
generalized linear models, one due to Wang and another to Cook and
Weisberg.
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5.2 Nonlinearity Diagnostics
I Component-plus-residual plots also extend straightforwardly to general-

ized linear models.
• Nonparametric smoothing of the resulting scatterplots can be impor-

tant to interpretation, especially in models for binary responses, where
the discreteness of the response makes the plots difficult to examine.

• Similar effects can occur for binomial and Poisson data.

I Component-plus-residual plots use the linearized model from the last
step of the IWLS fit.
• For example, the partial residual for adds the working residual to

.
• The component-plus-residual plot graphs the partial residual against

.
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I An illustrative component+residual plot, for assets in the over-dispersed
Poisson regression fit to Ornstein’s interlocking-directorate data appears
in Figure 6.
• This plot is difficult to examine because of the large positive skew in

assets, but it appears as if the assets slope is a good deal steeper at
the left than at the right.

• I therefore investigated transforming assets down the ladder of
powers and roots, eventually arriving at the log transformation, the
component+residual plot for which appears quite straight (Figure 7).
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Figure 6. Component+residual plot for assets in the over-dispersed Pois-
son regression for Ornstein’s data.
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Figure 7. Component+residual plot for log(assets) in the respecified
over-dispersed Poisson regression model for Ornstein’s data.
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6. Summary
I Generalized linear models (GLMs) consist of three components:

(a) A random component specifying the conditional distribution of the
response variable given the explanatory variables, traditionally a
member of an exponential family — the normal (Gaussian), binomial,
Poisson, gamma, or inverse-Gaussian families of distributions.
– For distributions in exponential families, the conditional variance of

is a function of , the mean of , and of a dispersion parameter
; in the binomial and Poisson families, is fixed to 1.

(b) A linear predictor, = + 1 1 + · · · + .
(c) A link function ( ) = , which transforms the expectation of the

response to the linear predictor; the inverse of the link is the mean
function, 1( ) = .

c° 2014 by John Fox Sociology 740



Generalized Linear Models: An Introduction 34

I Traditional GLMs are fit to data by maximum likelihood.
• The deviance under a fitted model is (y; b) = 2(log 1 log 0),

where y contains the observed values of the response variable,b contains the fitted values of the response, 1 is the maximized
likelihood for a saturated model that dedicates one parameter to each
observation, and 0 is the maximized likelihood under the model in
question.

• The scaled deviance is (y; b) b, where b is an estimate of the
dispersion.

• In analogy to incremental -tests in an analysis of variance for linear
models, differences in deviance may be used for likelihood-ratio tests
in GLMs; for models with a dispersion parameter, -tests are also
available.

• Wald tests for individual coefficients are produced by dividing the
estimated coefficients by their standard errors.
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I The binomial family is used for dichotomous response variables. Pairing
the binomial family with the logit link produces the logistic-regression
model; pairing the binomial family with the probit link produces the probit
model.

I The Poisson family is often used to analyze count data. The canonical
link for the Poisson family is the log link.

I Over-dispersed binomial and Poisson models introduce a dispersion
parameter that is not fixed to 1; these models are fit by quasi-likelihood.

I Most standard linear-model diagnostics may be generalized to GLMs.
These include hat-values, studentized residuals, Cook’s distances,
added-variable plots, and component-plus-residual plots (among
others).
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