Sociology 740

John Fox

Lecture Notes

11. Generalized Linear Models: An Introduction

Copyright © 2014 by John Fox

Generalized Linear Models: An Introduction

1. Introduction

- A synthesis due to Nelder and Wedderburn, generalized linear models (GLMs) extend the range of application of linear statistical models by accommodating response variables with non-normal conditional distributions.
- Except for the error, the right-hand side of a generalized linear model is essentially the same as for a linear model.

Sociology 740

2. Goals

- ▶ To introduce the format and structure of generalized linear models
- To show how the familiar linear, logit, and probit models fit into the GLM framework.
- ► To introduce Poisson generalized linear models for count data.
- ► To describe diagnostics for generalized linear models.

© 2014 by John Fox

Sociology 740

3

2

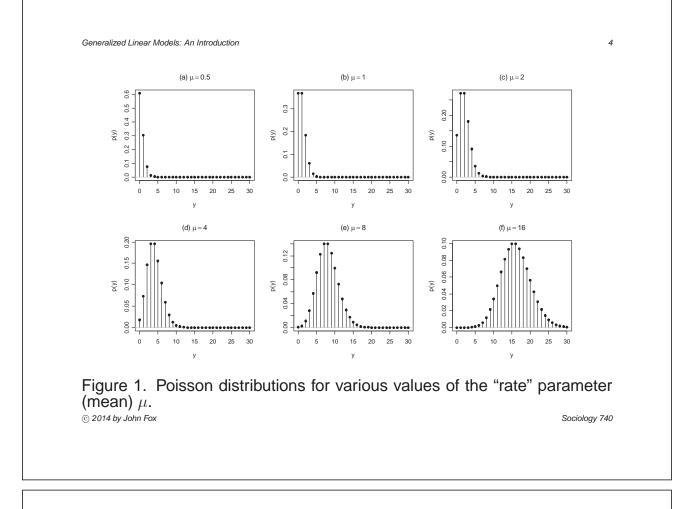
Generalized Linear Models: An Introduction

3. The Structure of Generalized Linear Models

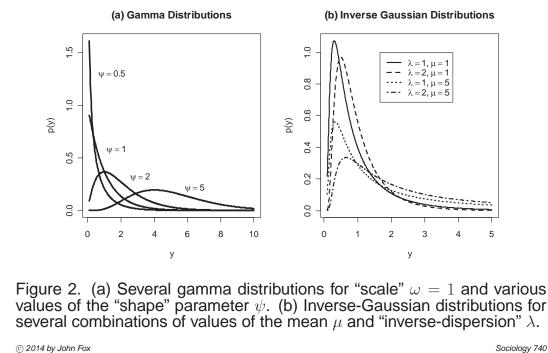
► A generalized linear model consists of three components:

- 1. A *random component*, specifying the conditional distribution of the response variable, Y_i , given the explanatory variables.
 - Traditionally, the random component is a member of an "exponential family" — the normal (Gaussian), binomial, Poisson, gamma, or inverse-Gaussian families of distributions — but generalized linear models have been extended beyond the exponential families.
 - The Gaussian and binomial distributions are familiar.
 - Poisson distributions are often used in modeling count data. Poisson random variables take on non-negative integer values, 0, 1, 2, Some examples are shown in Figure 1.

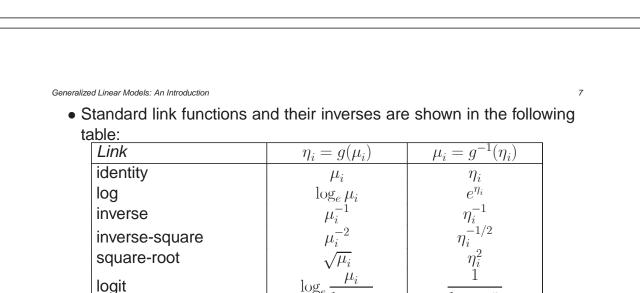
© 2014 by John Fox



- The inverse of the link function is sometimes called the *mean function*: $g^{-1}(\eta_i) = \mu_i$.



© 2014 by John Fox



logit	$\log_e \frac{\mu_i}{1-\mu_i}$	$\frac{1}{1+e^{-\eta_i}}$	
probit	$\Phi^{-1}(\mu_i)$	$\Phi(\eta_i)$	
log-log	$-\log_e[-\log_e(\mu_i)]$	$\exp[-\exp(-\eta_i)]$	
complementary log-log	$\log_e[-\log_e(1-\mu_i)]$	$1 - \exp[-\exp(\eta_i)]$	

• The logit, probit, and complementary-log-log links are for binomial *data*, where Y_i represents the observed proportion and μ_i the expected proportion of "successes" in n_i binomial trials — that is, μ_i is the probability of a success.

© 2014 by John Fox

- For the probit link, Φ is the standard-normal cumulative distribution function, and Φ^{-1} is the standard-normal quantile function.
- An important special case is *binary data*, where all of the binomial trials are 1, and therefore all of the observed proportions Y_i are either 0 or 1. This is the case that we examined the previous lecture.
- For distributions in the exponential families, the conditional variance of Y is a function of the mean μ together with a dispersion parameter ϕ (as shown in the table below).
 - For the binomial and Poisson distributions, the dispersion parameter is fixed to 1.
 - For the Gaussian distribution, the dispersion parameter is the usual error variance, which we previously symbolized by σ_{ε}^2 (and which doesn't depend on μ).

© 2014 by John Fox

Sociology 740

9

Generalized Linear Models: An Introduction

Family	Canonical Link	Range of Y_i	$V(Y_i \eta_i)$
Gaussian	identity	$(-\infty, +\infty)$	ϕ
binomial	logit	$\frac{0, 1, \dots, n_i}{n_i}$	$\left \frac{\mu_i(1-\mu_i)}{n_i}\right $
Poisson	log	$0, 1, 2, \dots$	μ_i
gamma	inverse	$(0,\infty)$	$\phi \mu_i^2$
inverse-Gaussian	inverse-square	$(0,\infty)$	$\phi \mu_i^3$

Sociology 740

- The canonical link for each familiy is not only the one most commonly used, but also arises naturally from the general formula for distributions in the exponential families.
 - Other links may be more appropriate for the specific problem at hand
 - One of the strengths of the GLM paradigm in contrast, for example, to transformation of the response variable in a linear model — is the separation of the link function from the conditional distribution of the response.
- ► GLMs are typically fit to data by the method of maximum likelihood.
 - Denote the maximum-likelihood estimates of the regression parameters as $\widehat{\alpha}, \widehat{\beta}_1, ..., \widehat{\beta}_k$.
 - These imply an estimate of the mean of the response, $\hat{\mu}_i = g^{-1}(\hat{\alpha} + \hat{\beta}_1 x_{i1} + \cdots + \hat{\beta}_k x_{ik}).$

© 2014 by John Fox

Generalized Linear Models: An Introduction

• The log-likelihood for the model, maximized over the regression coefficients, is

$$\log_e L_0 = \sum_{i=1}^n \log_e p(\widehat{\mu}_i, \phi; y_i)$$

where $p(\cdot)$ is the probability or probability-density function corresponding to the family employed.

 A "saturated" model, which dedicates one parameter to each observation, and hence fits the data perfectly, has log-likelihood

$$\log_e L_1 = \sum_{i=1}^n \log_e p(y_i, \phi; y_i)$$

• Twice the difference between these log-likelihoods defines the *residual deviance* under the model, a generalization of the residual sum of squares for linear models:

$$D(\mathbf{y}; \widehat{\boldsymbol{\mu}}) = 2(\log_e L_1 - \log_e L_0)$$

© 2014 by John Fox

Sociology 740

10

Sociology 740

- Dividing the deviance by the estimated dispersion produces the scaled deviance: D(y; μ)/φ.
- Likelihood-ratio tests can be formulated by taking differences in the residual deviance for nested models.
- For models with an estimated dispersion parameter, one can alternatively use incremental *F*-tests.
- Wald tests for individual coefficients are formulated using the estimated asymptotic standard errors of the coefficients.
- ► Some familiar examples:
 - Combining the identity link with the Gaussian family produces the normal linear model.
 - The maximum-likelihood estimates for this model are the ordinary least-squares estimates.
 - Combining the logit link with the binomial family produces the logisticregression model (linear-logit model).

© 2014 by John Fox

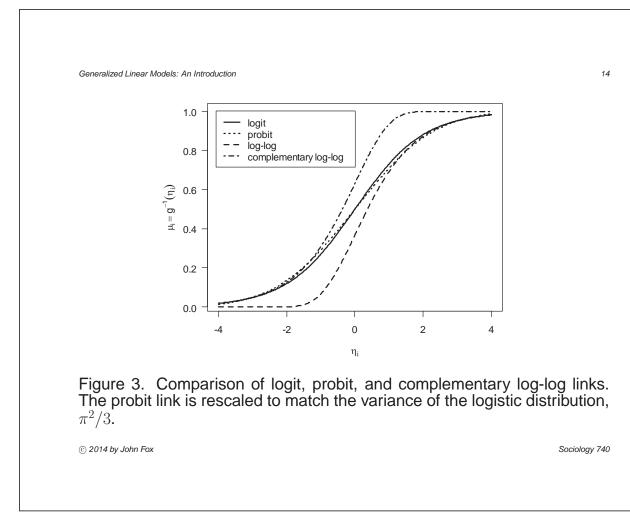
Generalized Linear Models: An Introduction

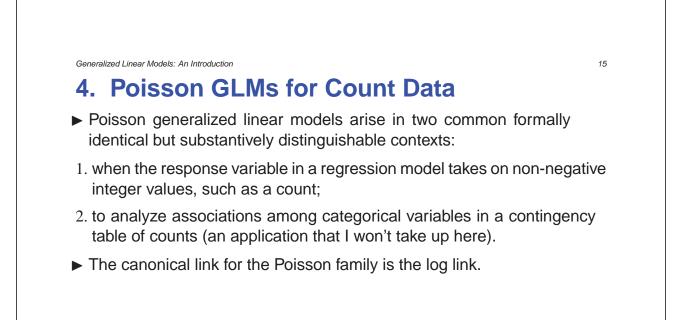
- Combining the probit link with the binomial family produces the linear probit model.
- Although the logit and probit links are familiar, the log-log and complementary log-log links for binomial data are not.
 - These links are compared in Figure 3.
 - The log-log or complementary log-log link may be appropriate when the probability of the response as a function of the linear predictor approaches 0 and 1 asymmetrically.

© 2014 by John Fox

12

Sociology 740





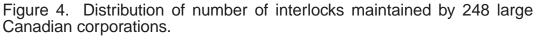
4.1 Poisson Regression

- Recall Ornstein's data on interlocking director and top-executive positions among 248 major Canadian firms
 - Ornstein performed a least-squares regression of the number of interlocks maintained by each firm on the firm's assets, and dummy variables for the firm's nation of control and sector of operation.
 - I found that a square-root transformation of the response variable tends to stabilize residual variance and make the distribution of the residuals more symmetric.
- Because the response variable is a count, a Poisson linear model might be preferable.
 - The marginal distribution of number of interlocks, in Figure 4, shows many zero counts and an extreme positive skew.
 - Fitting a Poisson GLM with log link to Ornstein's data produces the following results:

© 2014 by John Fox

Generalized Linear Models: An Introduction

hound of the flocks



© 2014 by John Fox

Sociology 740

	Coefficient	Standard Error
Constant	2.32	0.052
Assets	0.0000209	0.0000012
Nation of Control (baseline: Canada)		
Other	-0.163	0.073
United Kingdom	-0.577	0.089
United States	-0.826	0.049
Sector (baseline: Agriculture and Food)		
Banking	-0.409	0.156
Construction	-0.620	0.211
Finance	0.677	0.069
Holding Company	0.208	0.119
Manufacturing	0.0527	0.0752
Merchandizing	0.178	0.087
Mining	0.621	0.069
Transportation	0.678	0.075
Wood and Forest Products	0.712	0.075

© 2014 by John Fox

Sociology 740

19

Generalized Linear Models: An Introduction

– An analysis of deviance table for the model shows that all three explanatory variables have highly statistically significant effects:

Source	G^2	df	p
Assets	390.90	1	$\ll .0001$
Nation of Control	328.94	3	$\ll .0001$
Sector	361.46	9	$\ll .0001$

 The deviance for the null model (with only a constant) is 3737.0, and 1887.4 for the full model; thus an analog of the squared multiple correlation is

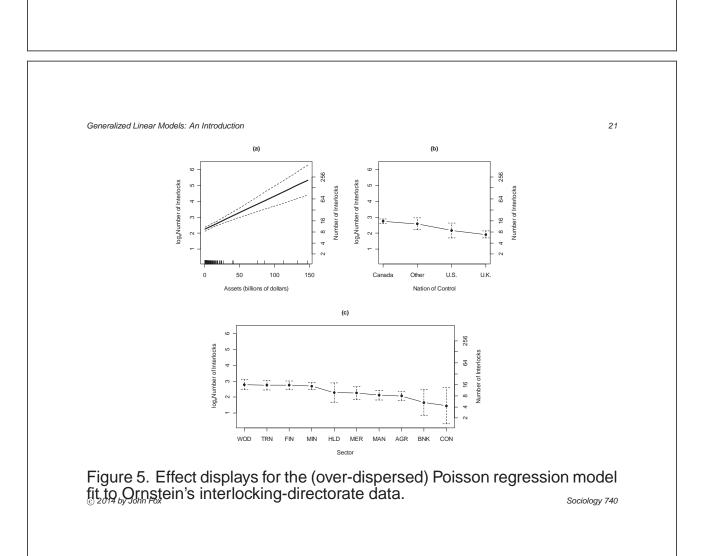
$$R^2 = 1 - \frac{1887.4}{3737.0} = .495$$

– Effect displays for the model are shown in Figure 5.

© 2014 by John Fox

4.2 Over-Dispersed Binomial and Poisson Models

- ▶ The binomial and Poisson GLMs fix the dispersion parameter ϕ to 1.
- It is possible to fit versions of these models in which the dispersion is a free parameter, to be estimated along with the coefficients of the linear predictor
 - The resulting error distribution is not an exponential family; the models are fit by "quasi-likelihood."
- ► The regression coefficients are unaffected by allowing dispersion different from 1, but the coefficient standard errors are multiplied by the square-root of $\hat{\phi}$.
 - Because the estimated dispersion typically exceeds 1, this inflates the standard errors
 - That is, failing to account for "over-dispersion" produces misleadingly small standard errors.



Sociology 740

- So-called over-dispersed binomial and Poisson models arise in several different circumstances.
 - For example, in modeling proportions, it is possible that
 - the probability of success μ varies for different individuals who share identical values of the predictors (this is called "unmodeled heterogeneity");
 - or the individual successes and failures for a "binomial" observation are not independent, as required by the binomial distribution.

© 2014 by John Fox

Generalized Linear Models: An Introduction

5. Diagnostics for GLMS

- Most regression diagnostics extend straightforwardly to generalized linear models.
- These extensions typically take advantage of the computation of maximum-likelihood estimates for generalized linear models by iterated weighted least squares (the procedure typically used to fit GLMs).

Sociology 740

22

Sociology 740

5.1 Outlier, Leverage, and Influence Diagnostics

5.1.1 Hat-Values

- Hat-values for a generalized linear model can be taken directly from the final iteration of the IWLS procedure
- ► They have the usual interpretation except that the hat-values in a GLM depend on Y as well as on the configuration of the X's.

© 2014 by John Fox

Generalized Linear Models: An Introduction 25
5.1.2 Residuals
Several kinds of residuals can be defined for generalized linear models:
Response residuals are simply the differences between the observed response and its estimated expected value: Y_i − µ̂_i.
Working residuals are the residuals from the final WLS fit.
These may be used to define partial residuals for component-plusresidual plots (see below).
Pearson residuals are case-wise components of the Pearson goodness-of-fit statistic for the model:

$$\frac{\widehat{\phi}^{1/2}(Y_i - \widehat{\mu}_i)}{\sqrt{\widehat{V}(Y_i|\eta_i)}}$$

where ϕ is the dispersion parameter for the model and $V(Y_i|\eta_i)$ is the variance of the response given the linear predictor.

© 2014 by John Fox

Sociology 740

• Standardized Pearson residuals correct for the conditional response variation and for the leverage of the observations:

$$R_{Pi} = \frac{Y_i - \hat{\mu}_i}{\sqrt{\hat{V}(Y_i|\eta_i)(1 - h_i)}}$$

- Deviance residuals, D_i , are the square-roots of the case-wise components of the residual deviance, attaching the sign of $Y_i \hat{\mu}_i$.
- Standardized deviance residuals are

$$R_{Di} = \frac{D_i}{\sqrt{\hat{\phi}(1-h_i)}}$$

- Several different approximations to studentized residuals have been suggested.
 - To calculate exact studentized residuals would require literally refitting the model deleting each observation in turn, and noting the decline in the deviance.

© 2014 by John Fox

Generalized Linear Models: An Introduction

• Here is an approximation due to Williams:

$$E_i^* = \sqrt{(1 - h_i)R_{Di}^2 + h_i R_{Pi}^2}$$

where, once again, the sign is taken from $Y_i - \hat{\mu}_i$.

• A Bonferroni outlier test using the standard normal distribution may be based on the largest absolute studentized residual.

Sociology 740

5.1.3 Influence Measures

An approximation to Cook's distance influence measure is

$$D_i = \frac{R_{Pi}^2}{\widehat{\phi}(k+1)} \times \frac{h_i}{1-h_i}$$

- Approximate values of dfbeta_{ij} and dfbetas_{ij} (influence and standardized influence on each coefficient) may be obtained directly from the final iteration of the IWLS procedure.
- There are two largely similar extensions of added-variable plots to generalized linear models, one due to Wang and another to Cook and Weisberg.

© 2014 by John Fox

Sociology 740

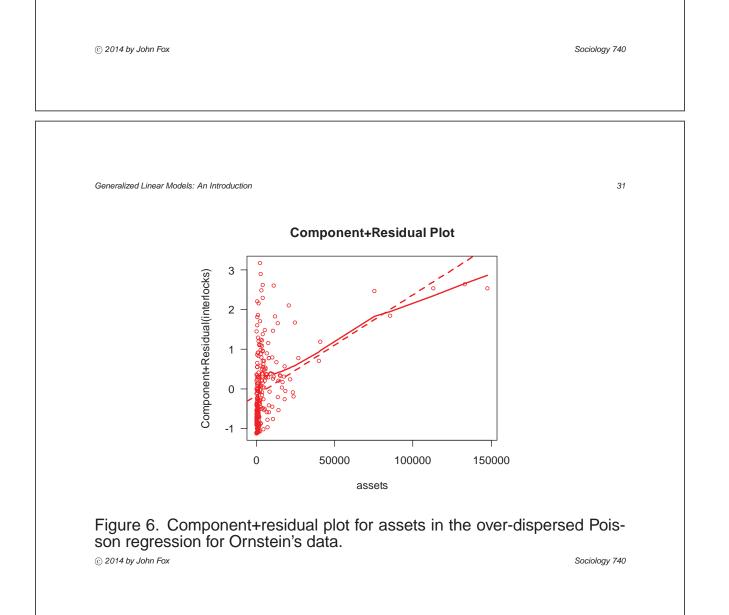
29

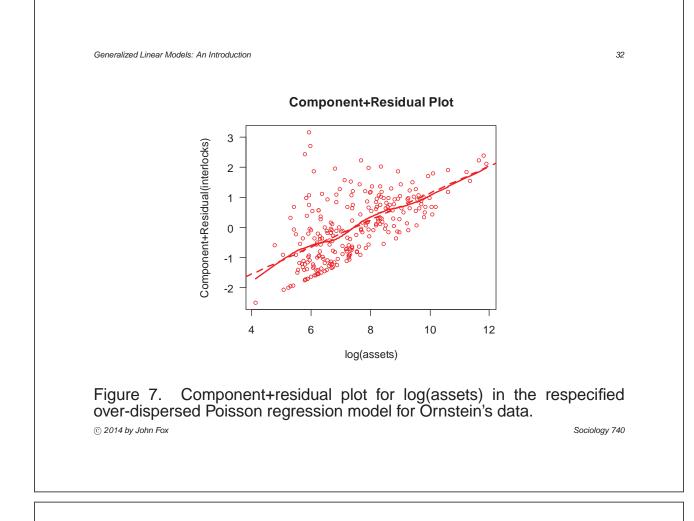
Generalized Linear Models: An Introduction

5.2 Nonlinearity Diagnostics

- Component-plus-residual plots also extend straightforwardly to generalized linear models.
 - Nonparametric smoothing of the resulting scatterplots can be important to interpretation, especially in models for binary responses, where the discreteness of the response makes the plots difficult to examine.
 - Similar effects can occur for binomial and Poisson data.
- Component-plus-residual plots use the linearized model from the last step of the IWLS fit.
 - For example, the partial residual for X_j adds the working residual to $B_j X_{ij}$.
 - The component-plus-residual plot graphs the partial residual against X_i .

- An illustrative component+residual plot, for assets in the over-dispersed Poisson regression fit to Ornstein's interlocking-directorate data appears in Figure 6.
 - This plot is difficult to examine because of the large positive skew in assets, but it appears as if the assets slope is a good deal steeper at the left than at the right.
 - I therefore investigated transforming assets down the ladder of powers and roots, eventually arriving at the log transformation, the component+residual plot for which appears quite straight (Figure 7).





6. Summary

- ► Generalized linear models (GLMs) consist of three components:
 - (a) A random component specifying the conditional distribution of the response variable *Y* given the explanatory variables, traditionally a member of an exponential family — the normal (Gaussian), binomial, Poisson, gamma, or inverse-Gaussian families of distributions.
 - For distributions in exponential families, the conditional variance of Y is a function of μ , the mean of Y, and of a dispersion parameter ϕ ; in the binomial and Poisson families, ϕ is fixed to 1.
 - (b) A linear predictor, $\eta_i = \alpha + \beta_1 X_{i1} + \cdots + \beta_k X_{ik}$.
 - (c) A link function $g(\mu_i) = \eta_i$, which transforms the expectation of the response to the linear predictor; the inverse of the link is the mean function, $g^{-1}(\eta_i) = \mu_i$.

- ► Traditional GLMs are fit to data by maximum likelihood.
 - The deviance under a fitted model is $D(\mathbf{y}; \hat{\boldsymbol{\mu}}) = 2(\log_e L_1 \log_e L_0)$, where \mathbf{y} contains the observed values of the response variable, $\hat{\boldsymbol{\mu}}$ contains the fitted values of the response, L_1 is the maximized likelihood for a saturated model that dedicates one parameter to each observation, and L_0 is the maximized likelihood under the model in question.
 - The scaled deviance is $D(\mathbf{y}; \hat{\boldsymbol{\mu}}) / \hat{\phi}$, where $\hat{\phi}$ is an estimate of the dispersion.
 - In analogy to incremental *F*-tests in an analysis of variance for linear models, differences in deviance may be used for likelihood-ratio tests in GLMs; for models with a dispersion parameter, *F*-tests are also available.
 - Wald tests for individual coefficients are produced by dividing the estimated coefficients by their standard errors.

© 2014 by John Fox

Generalized Linear Models: An Introduction

- The binomial family is used for dichotomous response variables. Pairing the binomial family with the logit link produces the logistic-regression model; pairing the binomial family with the probit link produces the probit model.
- The Poisson family is often used to analyze count data. The canonical link for the Poisson family is the log link.
- Over-dispersed binomial and Poisson models introduce a dispersion parameter ϕ that is not fixed to 1; these models are fit by quasi-likelihood.
- Most standard linear-model diagnostics may be generalized to GLMs. These include hat-values, studentized residuals, Cook's distances, added-variable plots, and component-plus-residual plots (among others).

Sociology 740

34

Sociology 740