Sociology 740 John Fox

Lecture Notes

Review for the Second Exam

Copyright © 2014 by John Fox

Second Review

1. Diagnostics: Unusual and Influential Data

- ► Outliers, leverage and influence.
- ► Assessing leverage: Hat-values.
- ▶ Detecting outliers: Studentized residuals.
- ▶ Measuring influence: Influence on coefficients and Cook's *D*.
- ▶ Joint influence: Added-variable plots.

2. Diagnostics: Collinearity and Model Selection

- ▶ Nature of the problem.
- ▶ Variance-inflation factors (VIF) and generalized variance-inflation factors (GVIF).
- ▶ Putative solutions:
 - model respecification.
 - variable selection.
 - biased estimation.
 - prior information.
- ▶ Model selection criteria: Mallows's C_p , cross-validation, generalized cross-validation, AIC, BIC.
- Model validation.

© 2014 by John Fox Sociology 740

Second Review 3

3. Diagnostics: Non-Normality, Non-Constant Error Variance, and Nonlinearity

- ► Non-normality: Quantile-comparison plot, histogram or density estimate; boxplot; transformations.
- ▶ Non-constant error variance: Plotting residuals against fitted values; spread-level plot; transformations, WLS regression, and "corrected" standard errors.
- ▶ Nonlinearity: Component+residual plots; transformations, polynomial regression, and regresson splines.
- ▶ Discrete data: testing for nonlinearity ("lack of fit") and non-constant error variance (Levene's test).

- ► Maximum-likelihood methods (treat as optional):
 - Box-Cox transformation of Y.
 - Box-Tidwell transformation of the X's.
 - constructed variables and score tests.
 - score test for non-constant error variance.

© 2014 by John Fox Sociology 740

Second Review 5

4. Logit and Probit Models for Dichotomous Data

- ▶ Linear probability, logit, and probit models for dichotomous data.
- ▶ Interpretation of coefficients in the logit model:
 - $B_j/4$ is the effect on the estimated probability of "success" $\widehat{\pi}$ of increasing X_j by 1 (or, for a dummy variable, in comparison to the baseline category), holding other Xs constant, when $\widehat{\pi}$ remains near .5.
 - $\exp(B_j) = e^{B_j}$ is the *multiplicative* effect on the estimated odds of "success" $\widehat{\pi}/(1-\widehat{\pi})$ of increasing X_j by 1 holding other Xs constant.
- ▶ Wald and likelihood-ratio tests; analysis of deviance.

5. Logit and Probit Models for Polytomous Data

- ▶ Polytomous (multinomial) logit model.
- ▶ Nested dichotomies.
- ▶ Proportional-odds model (ordered logit model).

© 2014 by John Fox Sociology 740

Second Review 7

6. Generalized Linear Models

- ► Format of GLMs:
 - conditional distribution of *Y*:
 - exponential families: Gaussian, binomial, Poisson, gamma, inverse-Gaussian — fit by ML.
 - others: quasi-binomial, quasi-Poisson (for overdispersed binomial and Poisson data) — fit by quasi-likelihood.
 - dispersion parameter ϕ and conditional variance of Y.

Family	Canonical Link (see below)	Range of Y_i	$V(Y_i \eta_i)$
Gaussian	identity	$(-\infty, +\infty)$	ϕ
binomial	logit	$\frac{0,1,,n_i}{n_i}$	$\mu_i(1-\mu_i)$
Poisson	log	$0, 1, 2, \dots$	μ_i
gamma	inverse	$(0,\infty)$	$egin{array}{c} \mu_i \ \phi \mu_i^2 \end{array}$
inverse gaussian	inverse-square	$(0,\infty)$	$\phi\mu_i^3$

- linear predictor: $\eta_i = \alpha + \beta_1 X_{i1} + \cdots + \beta_k X_{ik}$.
- ullet link function, $g(\mu_i)=\eta_i$; and inverse-link (mean) function, $g^{-1}(\eta_i)=\mu_i$.

Link	$\eta_i = g(\mu_i)$	$\mu_i = g^{-1}(\eta_i)$
identity	μ_i	η_i
log	$\log_e \mu_i$	e^{η_i}
inverse	$\log_e \mu_i \\ \mu_i^{-1}$	η_i^{-1}
inverse-square	μ_i^{-2}	$\eta_i^{-1/2}$
square-root	$\sqrt{\mu_i}$	η_i^2
logit	$\log_e \frac{\mu_i}{1-\mu_i}$	$\frac{1}{1+e^{-\eta_i}}$
probit	$\Phi^{-1}(\mu_i)$	$\Phi(\eta_i)$
log-log	$-\log_e[-\log_e(\mu_i)]$	$\exp[-\exp(-\eta_i)]$
complementary log-log	$\log_e[-\log_e(1-\mu_i)]$	$1 - \exp[-\exp(\eta_i)]$

© 2014 by John Fox Sociology 740

Second Review 9

- ▶ Poisson and quasi-Poisson models for count data
 - Interpretation of coefficients: $e(B_j) = \exp(B_j)$ is the multiplicative effect on expected response count of increasing X_j by 1 (or, for dummy variable, in comparison to baseline category), holding other Xs constant.
 - Same estimated coefficients for Poisson and quasi-Poisson models, but SEs for quasi-Poisson model multiply by $\sqrt{\widehat{\phi}}$ (and thus are typically larger).
- ► Analysis of deviance.
- ▶ Diagnostics: studentized residuals, hat-values, Cook's D, dfbeta and dfbetas, added-variable plots, component+residual plots.

7. Overview of Linear and Generalized-Linear Models

Explanatory	Response	Type of Model	
Variables	Variable		
Quantitative	Quantitative	Regression	
(e.g., education, years)	(e.g., income, dollars)	Regression	
Categorical	Quantitative	Analysis of Variance	
(e.g., region, gender)	Quantitative	Alialysis of Vallatice	
		Dummy Regression/	
Mixed	Quantitative	Analysis of Covariance/	
		General Linear Model	

© 2014 by John Fox Sociology 740

Second Review 11

Explanatory Variables	Response Variable	Type of Model
Any combination	Dichotomous (e.g., yes/no)	Binary/Binomial Logit Model
Any combination	Polytomous, Unordered (e.g., vote)	Multinomial Logit Model, Nested Dichotomies?
Any combination	Polytomous, Ordered (e.g., education categories)	Proportional-Odds Model?, Continuation Dichotomies?
Any combination	Count	Poisson/Quasi-Poisson Generalized Linear Model